En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Schatten class of Sobolev embeddings, and how fast can/must oscillate an $L^2$ basis

Bookmarks Report an error
Multi angle
Authors : Nikolski, Nikolaï (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The "positivity phenomenon" for Bessel sequences, frames and Riesz bases $\left(u_k\right)$ are studied in $L^2$ spaces over the compacts of homogeneous (Coifman-Weiss) type $\Omega=(\Omega, \rho, \mu)$. Under some relations between three basic metric-measure dimensions of $\Omega$, we obtain asymptotics for the mass moving norms $\left\|u_k\right\|_{K R}$ (Kantorovich-Rubinstein), as well as for singular numbers of the Lipschitz and Hajlasz-Sobolev embeddings. Our main observation shows that, quantitatively, the rate of the convergence $\left\|u_k\right\|_{K R} \longrightarrow 0$ depends on an interplay between geometric doubling and measure doubling/halving exponents. The "more homogeneous" is the space, the sharper are the results.

Keywords : Metric-measure spaces; sign interlacing; KR-metrics; Riesz Bases; doubling/halving measures; p-Schatten classes

MSC Codes :
42C15 - General harmonic expansions, frames
43A85 - Analysis on homogeneous spaces
46B15 - Summability and bases, See also {46A35}
46E35 - Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47B10 - Operators belonging to operator ideals (nuclear, $p$-summing, in the Schatten-von Neumann classes, etc.)
54E35 - Metric spaces, metrizability

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 24/05/2024
    Conference Date : 29/04/2024
    Subseries : Research talks
    arXiv category : Classical Analysis and ODEs
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:41:40
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-04-29_Nikolski.mp4

Information on the Event

Event Title : Shapes and shades of Analysis: in depth and beyond / Formes et nuances de l'analyse moderne
Event Organizers : Abakumov, Evgeny ; Charpentier, Stéphane ; Kupin, Stanislas ; Tomilov, Yuri ; Zarouf, Rachid
Dates : 29/04/2024 - 03/05/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3004.html

Citation Data

DOI : 10.24350/CIRM.V.20168503
Cite this video as: Nikolski, Nikolaï (2024). Schatten class of Sobolev embeddings, and how fast can/must oscillate an $L^2$ basis. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20168503
URI : http://dx.doi.org/10.24350/CIRM.V.20168503

See Also

Bibliography

  • NIKOLSKI, N. Three dimensions of metric-measure spaces, Sobolev embeddings and optimal sign transport. St. Petersburg Mathematical Journal, 2023, vol. 34, no 2, p. 221-245. - https://doi.org/10.1090/spmj/1752



Imagette Video

Bookmarks Report an error