En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Unexpected norms on BMO and the Dirichlet problem

Bookmarks Report an error
Multi angle
Authors : Egert, Moritz (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : One of the many meaningful equivalent norms on BMO uses a Carleson-measure condition on the gradient of the Poisson extension. This is closely related to the Dirichlet problem for the Laplacian in the upper half-space with boundary data in BMO. The Poisson semigroup provides the unique solution in appropriate classes, and it is bounded on BMO, that is, it propagates the space boundary space in the transversal direction. If the tangential Laplacian is replaced by a general elliptic operator in divergence form, boundedness of the Poisson semigroup on BMO can fail in any dimension n ≥ 3. Somewhat unexpectedly, its gradient persists to give rise to a Carleson measure with norm equivalent to the BMO-norm at the boundary in dimensions n = 3, 4 and hence a unique solution to the corresponding Dirichlet problem. In my talk, I will try to explain the broader context behind this phenomenon and why we still do not know if the result is sharp.
Based on joint work with (of course) Pascal. It is Chapter 18 of our book but you will not have to read the seventeen preceding chapters to follow.

Keywords : Second-order divergence-form operator; elliptic equations and systems; boundary value problems; solvability; uniqueness; wellposedness; BMO; Poisson semigroup

MSC Codes :
35J25 - Boundary value problems for second-order elliptic equations
35J67 - Boundary values of solutions to elliptic PDE
42B25 - Maximal functions, Littlewood-Paley theory
42B30 - $H^p$-spaces
42B35 - Function spaces arising in harmonic analysis
46E35 - Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47A60 - Functional calculus
47D06 - One-parameter semigroups and linear evolution equations
35J57 - Boundary value problems for second-order elliptic systems
42B37 - Harmonic analysis and PDE
35J46 - First-order elliptic systems

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 10/07/2024
    Conference Date : 11/06/2024
    Subseries : Research talks
    arXiv category : Analysis of PDEs
    Mathematical Area(s) : PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:56:26
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-06-11_Egert.mp4

Information on the Event

Event Title : Harmonic analysis and partial differential equations / Analyse harmonique et équations aux dérivées partielles
Event Organizers : Bernicot, Frédéric ; Martell, José Maria ; Monniaux, Sylvie ; Portal, Pierre
Dates : 10/06/2024 - 14/06/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2979.html

Citation Data

DOI : 10.24350/CIRM.V.20189103
Cite this video as: Egert, Moritz (2024). Unexpected norms on BMO and the Dirichlet problem. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20189103
URI : http://dx.doi.org/10.24350/CIRM.V.20189103

See Also

Bibliography

  • AUSCHER, Pascal et EGERT, Moritz. Identification of Adapted Hardy Spaces. In : Boundary Value Problems and Hardy Spaces for Elliptic Systems with Block Structure. Cham : Springer International Publishing, 2023. p. 111-140. - http://dx.doi.org/10.1007/978-3-031-29973-5_9



Imagette Video

Bookmarks Report an error