En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Navigating, restructuring and reshaping learned latent spaces

Bookmarks Report an error
Multi angle
Authors : Solomon, Justin (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Modern machine learning architectures often embed their inputs into a lower-dimensional latent space before generating a final output. A vast set of empirical results---and some emerging theory---predicts that these lower-dimensional codes often are highly structured, capturing lower-dimensional variation in the data. Based on this observation, in this talk I will describe efforts in my group to develop lightweight algorithms that navigate, restructure, and reshape learned latent spaces. Along the way, I will consider a variety of practical problems in machine learning, including low-rank adaptation of large models, regularization to promote local latent structure, and efficient training/evaluation of generative models.

Keywords : machine learning; latent space

MSC Codes :
62E20 - Asymptotic distribution theory in statistics
62F99 - None of the above but in this section
62G07 - Density estimation
62P30 - Applications of statistics in engineering and industry
68T99 - None of the above but in this section
65C50 - Other computational problems in probability

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 22/11/2024
    Conference Date : 31/10/2024
    Subseries : Research talks
    arXiv category : Machine Learning
    Mathematical Area(s) : Computer Science ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:19
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-10-31_solomon

Information on the Event

Event Title : SIGMA (Signal, Image, Geometry, Modeling, Approximation) / SIGMA (Signal, Image, Géométrie, Modélisation, Approximation)
Event Organizers : Cohen, Albert ; Digne, Julie ; Fadili, Jalal ; Mula, Olga ; Nouy, Anthony
Dates : 28/10/2024 - 01/11/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3066.html

Citation Data

DOI : 10.24350/CIRM.V.20258003
Cite this video as: Solomon, Justin (2024). Navigating, restructuring and reshaping learned latent spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20258003
URI : http://dx.doi.org/10.24350/CIRM.V.20258003

See Also

Bibliography



Imagette Video

Bookmarks Report an error