En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Are adaptive robust confidence intervals possible?

Bookmarks Report an error
Multi angle
Authors : Gao, Chao (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We study the construction of confidence intervals under Huber's contamination model. When the contamination proportion is unknown, we characterize the necessary adaptation cost of the problem. In particular, for Gaussian location model, the optimal length of an adaptive confidence interval is proved to be exponentially wider than that of a non-adaptive one. Results for general location models will be discussed. In addition, we also consider the same problem in a network setting for an Erdos-Renyi graph with node contamination. It will be shown that the hardness of the adaptive confidence interval construction is implied by the detection threshold between Erdos-Renyi model and stochastic block model.

Keywords : adaptivity; confidence intervals; Huber's contamination model; location model; minimax testing; max hypothesis testing

MSC Codes :
62C20 - Minimax procedures
62F03 - Hypothesis testing
62F35 - Robustness and adaptive procedures

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 14/01/2025
    Conference Date : 16/12/2024
    Subseries : Research talks
    arXiv category : Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:32
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-16_Gao.mp4

Information on the Event

Event Title : New challenges in high-dimensional statistics / Statistique mathématique
Event Organizers : Klopp, Olga ; Pouet, Christophe ; Rakhlin, Alexander
Dates : 16/12/2024 - 20/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3055.html

Citation Data

DOI : 10.24350/CIRM.V.20279503
Cite this video as: Gao, Chao (2024). Are adaptive robust confidence intervals possible?. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20279503
URI : http://dx.doi.org/10.24350/CIRM.V.20279503

See Also

Bibliography



Imagette Video

Bookmarks Report an error