En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Score matching for simulating sub-Riemannian diffusion bridge processes

Bookmarks Report an error
Multi angle
Authors : Habermann, Karen (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Simulation of conditioned diffusion processes is an essential tool in inference for stochastic processes, data imputation, generative modelling, and geometric statistics. Whilst simulating diffusion bridge processes is already difficult on Euclidean spaces, when considering diffusion processes on Riemannian manifolds the geometry brings in further complications. In even higher generality, advancing from Riemannian to sub-Riemannian geometries introduces hypoellipticity, and the possibility of finding appropriate explicit approximations for the score, the logarithmic gradient of the density, of the diffusion process is removed. We handle these challenges and construct a method for bridge simulation on sub-Riemannian manifolds by demonstrating how recent progress in machine learning can be modified to allow for training of score approximators on sub-Riemannian manifolds. Since gradients dependent on the horizontal distribution, we generalise the usual notion of denoising loss to work with non-holonomic frames using a stochastic Taylor expansion, and we demonstrate the resulting scheme both explicitly on the Heisenberg group and more generally using adapted coordinates. Joint work with Erlend Grong (Bergen) and Stefan Sommer (Copenhagen).

Keywords : bridge process; sub-Riemannian manifold; score matching; bridge sampling

MSC Codes :
53C17 - Sub-riemannian geometry
58J65 - Diffusion processes and stochastic analyisis on manifolds
62R30 - Statistics on manifolds

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 06/12/2024
    Conference Date : 26/11/2024
    Subseries : Research talks
    arXiv category : Probability ; Machine Learning ; Differential Geometry ; Statistics Theory
    Mathematical Area(s) : Analysis and its Applications ; Geometry ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:20
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-26_Habermann.mp4

Information on the Event

Event Title : Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne
Event Organizers : Borza, Samuel ; Chittaro, Francesca ; Rifford, Ludovic ; Sacchelli, Ludovic ; Stefani, Giorgio
Dates : 25/11/2024 - 29/11/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3091.html

Citation Data

DOI : 10.24350/CIRM.V.20272303
Cite this video as: Habermann, Karen (2024). Score matching for simulating sub-Riemannian diffusion bridge processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20272303
URI : http://dx.doi.org/10.24350/CIRM.V.20272303

See Also

Bibliography



Imagette Video

Bookmarks Report an error