En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Torus homeomorphisms and the fine curve graph

Bookmarks Report an error
Multi angle
Authors : Le Roux, Frédéric (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this joint work with Sebastian Hensel, we continue the work of Bowden Hensel-Mann-Militon-Webb relating the rotation set of a torus homeomorphism to the action on the fine curve graph. We show in particular that the shape of a ""big"" rotation set is determined by the fixed points on the Gromov boundary of the graph.

Keywords : rotation set; stable commentator length

MSC Codes :

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 10/01/2025
    Conference Date : 13/12/2024
    Subseries : Research talks
    arXiv category : Dynamical Systems ; Group Theory ; Geometric Topology
    Mathematical Area(s) : Dynamical Systems & ODE ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:00:59
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-13_Leroux.mp4

Information on the Event

Event Title : Foliations and Diffeomorphism Groups / Feuilletages et Groupes de Difféomorphisme
Event Organizers : Eynard-Bontemps, Hélène ; Meigniez, Gaël ; Nariman, Sam ; Yazdi, Mehdi
Dates : 09/12/2024 - 13/12/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3082.html

Citation Data

DOI : 10.24350/CIRM.V.20274903
Cite this video as: Le Roux, Frédéric (2024). Torus homeomorphisms and the fine curve graph. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20274903
URI : http://dx.doi.org/10.24350/CIRM.V.20274903

See Also

Bibliography



Imagette Video

Bookmarks Report an error