En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Interpolation between random matrices and free operators, and application to Quantum Information Theory

Bookmarks Report an error
Multi angle
Authors : Parraud, Félix (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : One of the most important question in Quantum Information Theory was to figure out whether the so-called Minimum Output Entropy (MOE) was additive. In this talk I will start by defining the counter-example originally built by Belinschi, Collins and Nechita. Then I will explain how with the help of a novel strategy, we managed with Collins to compute concentration estimate on the probability that the MOE is non-additive and how it yielded some explicit bounds for the dimension of spaces where violation of the MOE occurs. Finally, I will talk more in detail about this novel strategy which consists in interpolating random matrices and free operators with the help of free stochastic calculus.

Keywords : random matrix theory; free probability theory; random set; quantum information theory

MSC Codes :
46L54 - Free probability and free operator algebras
52A22 - Random convex sets and integral geometry
60B20 - Random matrices (probabilistic aspects)
94A17 - Measures of information, entropy

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/07/2024
    Conference Date : 08/07/2024
    Subseries : Research School
    arXiv category : Operator Algebras ; Probability ; Quantum Physics ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:43:46
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-07-08_parraud.mp4

Information on the Event

Event Title : Jean Morlet Chair - Research school: Random quantum channels: entanglement and entropies / Chaire Jean Morlet - Ecole: Canaux quantiques aléatoires: Intrication et entropies
Event Organizers : Collins, Benoît ; Demni, Nizar ; Kadri, Hachem ; Lancien, Cécilia ; Nechita, Ion ; Pellegrini, Clément
Dates : 08/07/2024 - 12/07/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3051.html

Citation Data

DOI : 10.24350/CIRM.V.20200403
Cite this video as: Parraud, Félix (2024). Interpolation between random matrices and free operators, and application to Quantum Information Theory. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20200403
URI : http://dx.doi.org/10.24350/CIRM.V.20200403

See Also

Bibliography

  • PARRAUD, Félix. On the operator norm of non-commutative polynomials in deterministic matrices and iid Haar unitary matrices. Probability Theory and Related Fields, 2022, vol. 182, no 3, p. 751-806. - http://dx.doi.org/10.1007/s00440-021-01101-0

  • COLLINS, Benoît et PARRAUD, Félix. Concentration estimates for random subspaces of a tensor product and application to quantum information theory. Journal of Mathematical Physics, 2022, vol. 63, no 10. - https://doi.org/10.1063/5.0073837

  • PARRAUD, Félix. Asymptotic expansion of smooth functions in deterministic and iid Haar unitary matrices, and application to tensor products of matrices. arXiv preprint arXiv:2302.02943, 2023. - https://doi.org/10.48550/arXiv.2302.02943



Imagette Video

Bookmarks Report an error