Auteurs : Bayer, Arend (Auteur de la conférence)
CIRM (Editeur )
Résumé :
This lecture series will be an introduction to stability conditions on derived categories, wall-crossing, and its applications to birational geometry of moduli spaces of sheaves. I will assume a passing familiarity with derived categories.
- Introduction to stability conditions. I will start with a gentle review of aspects of derived categories. Then an informal introduction to Bridgeland's notion of stability conditions on derived categories [2, 5, 6]. I will then proceed to explain the concept of wall-crossing, both in theory, and in examples [1, 2, 4, 6].
- Wall-crossing and birational geometry. Every moduli space of Bridgeland-stable objects comes equipped with a canonically defined nef line bundle. This systematically explains the connection between wall-crossing and birational geometry of moduli spaces. I will explain and illustrate the underlying construction [7].
- Applications : Moduli spaces of sheaves on $K3$ surfaces. I will explain how one can use the theory explained in the previous talk in order to systematically study the birational geometry of moduli spaces of sheaves, focussing on $K3$ surfaces [1, 8].
Codes MSC :
14D20
- Algebraic moduli problems, moduli of vector bundles
14E30
- Minimal model program (Mori theory, extremal rays)
14J28
- $K3$ surfaces and Enriques surfaces
18E30
- Derived categories, triangulated categories
|
Informations sur la Rencontre
Nom de la Rencontre : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe Organisateurs de la Rencontre : Broustet, Amaël ; Pasquier, Boris Dates : 23/11/15 - 27/11/15
Année de la rencontre : 2015
URL de la Rencontre : http://conferences.cirm-math.fr/1393.html
DOI : 10.24350/CIRM.V.18900203
Citer cette vidéo:
Bayer, Arend (2015). Stability and applications to birational and hyperkaehler geometry - Lecture 3. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18900203
URI : http://dx.doi.org/10.24350/CIRM.V.18900203
|
Voir Aussi
Bibliographie
- [1] Arcara, D., Bertram, A., Coskun, I., Huizenga, J. (2013). The minimal model program for the Hilbert scheme of points on $\mathbb{P}2$ and Bridgeland stability. Advances in Mathematics, 235, 580-626. < arXiv:1203.0316> - http://arxiv.org/abs/1203.0316
- [2] Bridgeland, T. (2007). Stability condition on triangulated categories. Annals of Mathematics. Second Series, 166(2), 317-345. - http://arxiv.org/abs/math/0212237
- [3] Bridgeland, T. (2009). Spaces of stability conditions. In D. Abramovich, A. Bertram, L. Katzarkov, R. Pandharipande, & M. Thaddeus (Eds.), Algebraic geometry: Seattle 2005 (pp. 1-21). Providence, RI: American Mathematical Society. (Proceedings of Symposia in Pure Mathematics 80.1). - http://arxiv.org/abs/math/0611510
- [4] Bridgeland, T. (2008). Stability conditions on $K3$ surfaces. Duke Mathematical Journal, 141(2), 241-291. - http://arxiv.org/abs/math/0307164
- [5] Caldararu, A. (2005). Derived categories of sheaves : a skimming. In R. Vakil (Ed.), Snowbird lectures in algebraic geometry (pp. 43-75). Providence, RI: American Mathematical Society. (Contemporary Mathematics, 388). - http://arxiv.org/abs/1301.6968