En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Time parallel time integration

Sélection Signaler une erreur
Multi angle
Auteurs : Gander, Martin (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé :
Codes MSC :
65F10 - Iterative methods for linear systems
65M55 - Multigrid methods; domain decomposition (IVP of PDE)
65N30 - Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65N55 - Multigrid methods; domain decomposition (BVP of PDE)
65Y05 - Parallel computation (numerical methods)

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs16/images/MGandler_1.pdf
http://smai.emath.fr/cemracs/cemracs16/images/MGandler_2.pdf
http://smai.emath.fr/cemracs/cemracs16/images/MGandler_3.pdf
http://smai.emath.fr/cemracs/cemracs16/images/MGandler_4.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 29/07/2016
    Date de Captation : 19/07/2016
    Collection : Ecoles de recherche
    Sous Collection : Research School
    Catégorie arXiv : Numerical Analysis
    Domaine(s) : Analyse Numérique & Calcul Formel
    Format : MP4 (.mp4) - HD
    Durée : 02:30:25
    Audience : Chercheurs ; Etudiants Science Cycle 2
    Download : https://videos.cirm-math.fr/2016-07-19_Gander.mp4

Informations sur la Rencontre

Nom de la Rencontre : CEMRACS : Numerical challenges in parallel scientific computing - Summer school / CEMRACS : Défis numériques en calcul scientifique parallèle - Ecole d'été
Organisateurs de la Rencontre : Grigori, Laura ; Japhet, Caroline ; Moireau, Philippe ; Parnaudeau, Philippe
Dates : 18/07/2016 - 26/08/2016
Année de la rencontre : 2016
URL de la Rencontre : http://conferences.cirm-math.fr/1430.html

Données de citation

DOI : 10.24350/CIRM.V.19022703
Citer cette vidéo: Gander, Martin (2016). Time parallel time integration. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19022703
URI : http://dx.doi.org/10.24350/CIRM.V.19022703

Voir Aussi

Bibliographie

  • Bellen, A., & Zennaro, M. (1989). Parallel algorithms for initial-value problems for difference and differential equations. Journal of Computational and Applied Mathematics, 25(3), 341-350 - http://dx.doi.org/10.1016/0377-0427(89)90037-X

  • Chartier, P., & Philippe, B. (1993). A parallel shooting technique for solving dissipative ODE's. Computing, 51(3-4), 209-236 - http://dx.doi.org/10.1007/BF02238534

  • Christlieb, A.J., MacDonald, C.B., & Ong, B.W. Parallel high-order integrators. SIAM Journal on Scientific Computing, 32(2), 818-835 - http://dx.doi.org/10.1137/09075740X

  • Emmett, M., & Minion, M.L. (2012). Toward an efficient parallel in time method for partial differential equations. Communications in Applied Mathematics and Computational Science, 7(1), 105-132 - http://dx.doi.org/10.2140/camcos.2012.7.105

  • Hackbusch, W. (1984). Parabolic multi-grid methods. In R. Glowinski, & J.-L. Lions (Eds),
    Computing methods in applied sciences and engineering VI (pp. 189-197). Amsterdam: North-Holland - https://www.zbmath.org/?q=an:0565.65062

  • Hairer, E., Nørsett, S.P., Wanner, G. (1993). Solving ordinary differential equations. I: Nonstiff problems. 2. rev. ed. Berlin: Springer-Verlag - http://dx.doi.org/10.1007/978-3-540-78862-1

  • Horton, G., Vandewalle, S. (1995). A space-time multigrid method for parabolic partial differential equations. SIAM Journal on Scientific Computing, 16(4), 848-864 - http://dx.doi.org/10.1137/0916050

  • Lelarasmee, E., Ruehli, A. E., & Sangiovanni-Vincentell, A.L. (1982). The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1(3), 131-145 - http://dx.doi.org/10.1109/TCAD.1982.1270004

  • Lions, J.-L., Maday, Y., & Turinici, G. (2001). Résolution d'EDP par un schéma en temps "pararéel". (2001). Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 332(7), 661-668 - http://dx.doi.org/10.1016/S0764-4442(00)01793-6

  • Lubich, Ch., & Ostermann, A. (1987). Multi-grid dynamic iteration for parabolic equations. BIT Numerical Mathematics, 27(2), 216-234 - http://dx.doi.org/10.1007/BF01934186

  • Maday, Y., & Rønquist, E.M. Parallelization in time through tensor-product space-time solvers. (2008). Comptes Rendus. Mathématique. Académie des Sciences, Paris, 346(1-2), 113-118 - http://dx.doi.org/10.1016/j.crma.2007.09.012

  • Minion, M.L. (2010). A hybrid parareal spectral deferred corrections method. Communications in Applied Mathematics and Computational Science, 5(2), 265-301 - http://dx.doi.org/10.2140/camcos.2010.5.265

  • Miranker, W.L., & Liniger, W. (1967). Parallel methods for the numerical integration of ordinary differential equations. Mathematics of Computation, 21, 303-320 - http://dx.doi.org/10.2307/2003233

  • Nievergelt, J. (1964). Parallel methods for integrating ordinary differential equations. Communications of the ACM, 7(12), 731-733 - http://dx.doi.org/10.1145/355588.365137

  • Saha, P., Stadel, J., & Tremaine, S. (1996). A parallel integration method for solar system dynamics. - http://arxiv.org/abs/astro-ph/9605016

  • Shampine, L.F.; Watts, H.A. (1969). Block implicit one-step methods. Mathematics of Computation, 23, 731-740 - http://dx.doi.org/10.2307/2004959

  • Sheen, D., Sloan, I.H., & Thomée, V. (2000). A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature. Mathematics of Computation, 69(229), 177-195 - http://dx.doi.org/10.1090/S0025-5718-99-01098-4

  • Worley, P.H. (1992). Parallelizing across time when solving time-dependent partial differential equations. In J. Dongarra (ed.) et al., Proceedings of the fifth SIAM conference on parallel processing for scientific computing (pp. 246-252). Philadelphia, PA: SIAM - https://www.zbmath.org/?q=an:0801.65093



Sélection Signaler une erreur