En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the cross-combined measure of families of binary lattices and sequences

Sélection Signaler une erreur
Multi angle
Auteurs : Gyarmati, Katalin (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : The cross-combined measure (which is a natural extension of crosscorrelation measure) is introduced and important constructions of large families of binary lattices with nearly optimal cross-combined measures are presented. These results are important in the study of large families of pseudorandom binary lattices but they are also strongly related to the one dimensional case: An easy method is showed obtaining strong constructions of families of binary sequences with nearly optimal cross-correlation measures based on the previous constructions of lattices. The important feature of this result is that so far there exists only one type of constructions of very large families of binary sequences with small cross-correlation measure, and this only type of constructions was based on one-variable irreducible polynomials. Since it is very complicated to construct one-variable irreducible polynomials over $\mathbb{F}_p$, it became necessary to show other types of constructions where the generation of sequences are much faster. Using binary lattices based on two-variable irreducible polynomials this problem can be avoided, however a slightly weaker upper bound is obtained for the cross-correlation measure than in the original construction. (But, contrary to one-variable polynomials, using Schöneman-Eisenstein criteria it is very easy to construct two-variable irreducible polynomials over $\mathbb{F}_p$.)

Mots-Clés : pseudorandomness ; cross-combined; cross-correlation; combined measure; correlation measure; binary lattice; binary sequence

Codes MSC :
11K45 - Pseudo-random numbers; Monte Carlo methods
94A60 - Cryptography

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 10/10/2018
    Date de Captation : 04/10/2018
    Sous Collection : Research talks
    Catégorie arXiv : Number Theory
    Domaine(s) : Théorie des Nombres
    Format : MP4 (.mp4) - HD
    Durée : 00:29:32
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2018-10-04_Gyarmati.mp4

Informations sur la Rencontre

Nom de la Rencontre : 6th International conference on uniform distribution theory - UDT2018 / 6e Colloque international sur la théorie de la répartition uniforme - UDT2018
Organisateurs de la Rencontre : Karpenkov, Oleg ; Nair, Radhakrishnan ; Verger-Gaugry, Jean-Louis
Dates : 01/10/2018 - 05/10/2018
Année de la rencontre : 2018
URL de la Rencontre : https://conferences.cirm-math.fr/1860.html

Données de citation

DOI : 10.24350/CIRM.V.19455203
Citer cette vidéo: Gyarmati, Katalin (2018). On the cross-combined measure of families of binary lattices and sequences. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19455203
URI : http://dx.doi.org/10.24350/CIRM.V.19455203

Voir Aussi

Bibliographie

  • Gyarmati, K. (2018). On the cross-combined measure of families of binary lattices and sequences. In J. Kaczorowski, J. Pieprzyk, & J. Pomykala (Eds.), Number-Theoretic Methods in Cryptology. NuTMiC 2017 (pp. 217-238). Springer, Cham - http://dx.doi.org/10.1007/978-3-319-76620-1_13



Sélection Signaler une erreur