En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Willmore stability and conformal rigidity of minimal surfaces in $\mathbb{S}^{n}$

Sélection Signaler une erreur
Multi angle
Auteurs : Kusner, Rob (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : A minimal surface $M$ in the round sphere $\mathbb{S}^{n}$ is critical for area, as well as for the Willmore bending energy $W=\int\int(1+H^{2})da$. Willmore stability of $M$ is equivalent to a gap between −2 and 0 in its area-Jacobi operator spectrum. We show the $W$-stability of $M$ persists in all higher dimensional spheres if and only if the Laplacian of $M$ has first eigenvalue 2. The square Clifford 2-torus in $\mathbb{S}^{3}$ and the equilateral minimal 2-torus in $\mathbb{S}^{5}$ have this spectral gap, and each is embedded by first eigenfunctions, so both are "persistently” $W$-stable. On the other hand, we discovered the equilateral torus has nontrivial third variation (with vanishing second variation) of $W$, and thus is not a $W$-minimizer (though it is the $W$-minimizer if we fix the conformal type!). This is evidence the Willmore Conjecture holds in every codimension. Another result concerns higher genus minimal surfaces (such as those constructed by Lawson and those by Karcher-Pinkall-Sterling) in $\mathbb{S}^{3}$ which Choe-Soret showed are embedded by first eigenfunctions: we show their first eigenspaces are always 4-dimensional, and that this implies each is (up to Möbius transformations of $\mathbb{S}^{n}$) the unique $W$-minimizer in its conformal class. (Some analogous results hold for free boundary minimal surfaces in the unit ball $\mathbb{B}^{n}$....). This is joint work with Peng Wang.

Mots-Clés : minimal surfaces; Willmore problem

Codes MSC :
53C42 - Immersions (minimal, prescribed curvature, tight, etc.), See also {49Q05, 49Q10, 53A10, 57R40, 57R42}

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 18/06/2019
    Date de Captation : 30/05/2019
    Sous Collection : Research talks
    Catégorie arXiv : Differential Geometry
    Domaine(s) : Géométrie ; EDP
    Format : MP4 (.mp4) - HD
    Durée : 01:10:32
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2019-05-30_Kusner.mp4

Informations sur la Rencontre

Nom de la Rencontre : Problèmes variationnels et géométrie des sous-variétés / Variational Problems and the Geometry of Submanifolds
Organisateurs de la Rencontre : Alias, Luis J. ; Loubeau, Eric ; Mazet, Laurent ; Montaldo, Stefano ; Soret, Marc ; Ville, Marina
Dates : 27/05/2019 - 31/05/2019
Année de la rencontre : 2019
URL de la Rencontre : https://conferences.cirm-math.fr/1936.html

Données de citation

DOI : 10.24350/CIRM.V.19532803
Citer cette vidéo: Kusner, Rob (2019). Willmore stability and conformal rigidity of minimal surfaces in $\mathbb{S}^{n}$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19532803
URI : http://dx.doi.org/10.24350/CIRM.V.19532803

Voir Aussi

Bibliographie



Sélection Signaler une erreur