En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Eremenko's conjecture, Devaney's hairs, and the growth of counterexamples

Sélection Signaler une erreur
Multi angle
Auteurs : Brown, Andrew (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, $I(f)=\left \{ z\in\mathbb{C}:\left | f^{n}\left ( z \right ) \right | \rightarrow \infty \right \}$ and produced a conjecture with a weak and a strong form. The strong form asks if every point in the escaping set of an arbitrary transcendental entire function can be joined to infinity by a curve in the escaping set.
This was answered in the negative by the 2011 paper of Rottenfusser, Rückert, Rempe, and Schleicher (RRRS) by constructing a tract that produces a function that cannot contain such a curve. In the same paper, it was also shown that if the function was of finite order, that is, log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )$ as $\left | z \right |\rightarrow \infty$, then every point in the escaping set can indeed be connected to infinity by a curve in the escaping set.
The counterexample $f$ used in the RRRS paper has growth such that log log $\left | f\left ( z \right ) \right |= \mathcal{O}\left ( log\left | z \right | \right )^{k}$ where $K > 12$ is an arbitrary constant. The question is, can this exponent, K, be decreased and can explicit calculations and counterexamples be performed and constructed that improve on this?

Codes MSC :
37F10 - Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
37F15 - Expanding maps; hyperbolicity; structural stability
37F50 - Small divisors, rotation domains and linearization; Fatou and Julia sets

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 02/11/2021
    Date de Captation : 20/09/2021
    Sous Collection : Research talks
    Catégorie arXiv : Dynamical Systems ; Complex Variables
    Domaine(s) : Systèmes Dynamiques & EDO
    Format : MP4 (.mp4) - HD
    Durée : 00:21:59
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2021-09-20_Brown.mp4

Informations sur la Rencontre

Nom de la Rencontre : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
Organisateurs de la Rencontre : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk
Dates : 20/09/2021 - 24/09/2021
Année de la rencontre : 2021
URL de la Rencontre : https://conferences.cirm-math.fr/2546.html

Données de citation

DOI : 10.24350/CIRM.V.19811103
Citer cette vidéo: Brown, Andrew (2021). Eremenko's conjecture, Devaney's hairs, and the growth of counterexamples. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19811103
URI : http://dx.doi.org/10.24350/CIRM.V.19811103

Voir Aussi

Bibliographie



Sélection Signaler une erreur