En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

New modal operators for constructive mathematics

Sélection Signaler une erreur
Multi angle
Auteurs : Blechschmidt, Ingo (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let A be a commutative ring. Does it have a maximal ideal? Classically, Zorn's lemma would allow us to concoct such an ideal. Constructively, no such ideal needs to exist. However, even though no maximal ideal might exist in the standard domain of discourse, a maximal ideal always exists *somewhere*. This is because every ring is countable *somewhere*, and *everywhere*, countable rings have maximal ideals. Concrete computational consequences follow from this phantomic variant of existence.
The talk will introduce the modal operators 'somewhere' and 'everywhere', referring to the multiverse of parametrized mathematics, the multitude of computational forcing extensions. Just like the well-known double negation operator, they are (mostly) trivial from a classical point of view. Their purpose is to (a) put established results in constructive algebra and constructive combinatorics into perspective, (b) construct an origin story for certain inductive definitions and (c) form a unified framework for certain techniques for extracting programs from classical proofs.
Our proposal is inspired by the study of the set-theoretic multiverse, but focuses less on exploring the range of set/topos-theoretic possibility and more on concrete applications in constructive mathematics. As guiding examples, we will examine algebraic closures of fields, Noetherian conditions on rings and the foundations of well-quasi orders such as Dickson's Lemma.
(joint work with Alexander Oldenziel)

Mots-Clés : topos-theoretic multiverse; constructive forcing; maximal ideals; well quasi-orders; modal operators

Codes MSC :
00A30 - Philosophy of mathematics [See also 03A05]
03F99 - None of the above but in this section
13L05 - Applications of logic to commutative algebra, See Also {03Cxx,03Hxx}
13P99 - None of the above but in this section
68R05 - Combinatorics in connection with computer science

    Informations sur la Vidéo

    Réalisateur : Petit, Jean
    Langue : Anglais
    Date de Publication : 15/05/2023
    Date de Captation : 02/05/2023
    Sous Collection : Research talks
    Catégorie arXiv : Logic ; Group Theory
    Domaine(s) : Algèbre ; Combinatoires ; Logique et Fondements
    Format : MP4 (.mp4) - HD
    Durée : 00:55:38
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-05-02_Blechschmidt.mp4

Informations sur la Rencontre

Nom de la Rencontre : Type Theory, Constructive Mathematics and Geometric Logic / Théorie des types, mathématiques constructives et logique géométrique
Organisateurs de la Rencontre : Coquand, Thierry ; Negri, Sara ; Rathjen, Michael ; Schuster, Peter
Dates : 01/05/2023 - 05/05/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2319.html

Données de citation

DOI : 10.24350/CIRM.V.20040003
Citer cette vidéo: Blechschmidt, Ingo (2023). New modal operators for constructive mathematics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20040003
URI : http://dx.doi.org/10.24350/CIRM.V.20040003

Voir Aussi

Bibliographie

  • JOYAL, André et TIERNEY, Myles. An Extension of the Galois Theory of Grothendieck, volume 309 of Memoirs. American Mathematical Society, 1984. -

  • BLASS, Andreas. Well-ordering and induction in intuitionistic logic and topoi. In : Mathematical logic and theoretical computer science. CRC Press, 2020. p. 29-48. -

  • HENRY, Shawn J. Classifying Topoi and Preservation of Higher Order Logic by Geometric Morphisms. arXiv preprint arXiv:1305.3254, 2013. - https://doi.org/10.48550/arXiv.1305.3254



Imagette Video

Sélection Signaler une erreur