En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear and nonlinear schemes for forward model reduction and inverse problems - Lecture 1

Sélection Signaler une erreur
Multi angle
Auteurs : Mula Hernandez, Olga (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.

Mots-Clés : model order reduction; inverse problems; approximation theory

Codes MSC :
65D99 - None of the above but in this section
65N21 - Inverse problems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 04/08/2023
    Date de Captation : 17/07/2023
    Sous Collection : Research School
    Catégorie arXiv : Machine Learning
    Domaine(s) : Analyse & Applications ; Analyse Numérique & Calcul Formel ; EDP
    Format : MP4 (.mp4) - HD
    Durée : 01:21:40
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-07-17_Mula_1.mp4

Informations sur la Rencontre

Nom de la Rencontre : CEMRACS 2023: Scientific Machine Learning / CEMRACS 2023: Apprentissage automatique scientifique
Organisateurs de la Rencontre : Auroux, Didier ; Campos Pinto, Martin ; Després, Bruno ; Dolean, Victorita ; Frénod, Emmanuel ; Lanteri, Stéphane ; Michel-Dansac, Victor
Dates : 17/07/2023 - 21/07/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2904.html

Données de citation

DOI : 10.24350/CIRM.V.20071103
Citer cette vidéo: Mula Hernandez, Olga (2023). Linear and nonlinear schemes for forward model reduction and inverse problems - Lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20071103
URI : http://dx.doi.org/10.24350/CIRM.V.20071103

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur