En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Exponent dynamics for branching processes

Sélection Signaler une erreur
Multi angle
Auteurs : Méléard, Sylvie (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider a stochastic model for the evolution of a discrete population structured by a trait taking finitely many values on a grid of [0, 1], with mutation and selection. We study of the dynamics of the population in logarithm size and time scales, under a large population assumption. In the first part of the talk, individual mutations are rare but the global mutation rate tends to infinity. Then negligible sub-populations may have a strong contribution to evolution. The traits can also be horizontally transferred, leading to a trade-off between natural evolution to higher birth rates and transfer which drives the population towards lower birth rates. We prove that the stochastic discrete exponent process converges to a piecewise affine continuous function, which can be described along successive phases determined by dominant traits. In the second part of the talk, the individual mutations are small but not rare, we don't have any transfer and we assume the grid mesh for the trait values becoming smaller and smaller. We establish that under our rescaling, the stochastic discrete exponent process converges to the viscosity solution of a Hamilton-Jacobi equation, filling the gap between individual-based evolutionary models and Hamilton-Jacobi equations.
Joint works with N. Champagnat and V.C. Tran, and S. Mirrahimi for the second part.

Mots-Clés : branching processes; asymptotic behavior; biological modeling

Codes MSC :
60J85 - Applications of branching processes
92D25 - Population dynamics (general)
35Q92 - PDEs in connection with biology and other natural sciences

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Sylvie_Meleard.pdf

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de Publication : 27/09/2023
    Date de Captation : 05/09/2023
    Sous Collection : Research talks
    Catégorie arXiv : Probability
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:46:26
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-05_Méléard.mp4

Informations sur la Rencontre

Nom de la Rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Organisateurs de la Rencontre : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/2390.html

Données de citation

DOI : 10.24350/CIRM.V.20087803
Citer cette vidéo: Méléard, Sylvie (2023). Exponent dynamics for branching processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20087803
URI : http://dx.doi.org/10.24350/CIRM.V.20087803

Voir Aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur