En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Relationship between classification and regression in statistical fairness

Sélection Signaler une erreur
Multi angle
Auteurs : Gaucher, Solenne (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Statistical fairness seeks to ensure an equitable distribution of predictions or algorithmic decisions across different sensitive groups. Among the fairness criteria under consideration, demographic parity is arguably the most conceptually straightforward: it simply requires that the distribution of outcomes is identical across all sensitive groups. In this talk, we explore the relationship between classification and regression problems under this constraint.
We provide several fundamental characterizations of the optimal classification function under the demographic parity constraint. In the awareness framework, analogous to the classical unconstrained classification scenario, we demonstrate that maximizing accuracy under this fairness constraint is equivalent to solving a fair regression problem followed by thresholding at level 1/2. We extend this result to linear-fractional classification measures (e.g., 𝐹-score, AM measure, balanced accuracy, etc.), emphasizing the pivotal role played by regression in this framework. Our findings leverage the recently developed connection between the demographic parity constraint and the multi-marginal optimal transport formulation. Informally, our result shows that the transition between the unconstrained problem and the fair one is achieved by replacing the conditional expectation of the label by the solution of the fair regression problem. Leveraging our analysis, we also demonstrate an equivalence between the awareness and the unawareness setups for two sensitive groups.

Mots-Clés : Statistical fairness; demographic parity; optimal transport

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de Publication : 08/01/2024
    Date de Captation : 21/12/2023
    Sous Collection : Research talks
    Catégorie arXiv : Statistics Theory
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:36:34
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-12-21_Gaucher.mp4

Informations sur la Rencontre

Nom de la Rencontre : Meeting in Mathematical Statistics: Statistical thinking in the age of AI : robustness, fairness and privacy / Rencontre de Statistique Mathématique
Organisateurs de la Rencontre : Klopp, Olga ; Ndaoud, Mohamed ; Pouet, Christophe ; Rakhlin, Alexander
Dates : 18/12/2023 - 22/12/2023
Année de la rencontre : 2023
URL de la Rencontre : https://conferences.cirm-math.fr/3087.html

Données de citation

DOI : 10.24350/CIRM.V.20120603
Citer cette vidéo: Gaucher, Solenne (2023). Relationship between classification and regression in statistical fairness. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20120603
URI : http://dx.doi.org/10.24350/CIRM.V.20120603

Voir Aussi

Bibliographie

  • GAUCHER, Solenne, SCHREUDER, Nicolas, et CHZHEN, Evgenii. Fair learning with Wasserstein barycenters for non-decomposable performance measures. In : International Conference on Artificial Intelligence and Statistics. PMLR, 2023. p. 2436-2459. - https://proceedings.mlr.press/v206/gaucher23a.html



Imagette Video

Sélection Signaler une erreur