En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Gradient flows for sampling and their deterministic interacting particle approximations

Sélection Signaler une erreur
Multi angle
Auteurs : Slepčev, Dejan (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Motivated by the task of sampling measures in high dimensions we will discuss a number of gradient flows in the spaces of measures, including the Wasserstein gradient flows of Maximum Mean Discrepancy and Hellinger gradient flows of relative entropy, the Stein Variational Gradient Descent and a new projected dynamic gradient flows. For all the flows we will consider their deterministic interacting-particle approximations. The talk is highlight some of the properties of the flows and indicate their differences. In particular we will discuss how well can the interacting particles approximate the target measures.The talk is based on joint works wit Anna Korba, Lantian Xu, Sangmin Park, Yulong Lu, and Lihan Wang.

Mots-Clés : Gradient flow; sampling; nonlocal equations; interacting particle systems

Codes MSC :
45M05 - Asymptotics
62D05 - Sampling theory, sample surveys
82C21 - Dynamic continuum models (systems of particles, etc.)
35Q70 - PDEs in connection with mechanics of particles and systems
35Q62 - PDEs in connection with statistics

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/3049/Slides/Dejan_Slepcev_CIRM.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 30/04/2024
    Date de Captation : 11/04/2024
    Sous Collection : Research talks
    Catégorie arXiv : Analysis of PDEs
    Domaine(s) : Analyse & Applications ; Analyse Numérique & Calcul Formel ; EDP
    Format : MP4 (.mp4) - HD
    Durée : 00:48:23
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-04-11_Slepcev.mp4

Informations sur la Rencontre

Nom de la Rencontre : Aggregation-Diffusion Equations & Collective Behavior: Analysis, Numerics and Applications / Conférence Chaire Jean Morlet: Equations d'agrégation-diffusion et comportement collectif: Analyse, schémas numériques et applications
Organisateurs de la Rencontre : Carrillo, José Antonio ; Esposito, Antonio ; Gómez-Castro, David ; Nouri, Anne
Dates : 08/04/2024 - 12/04/2024
Année de la rencontre : 2024
URL de la Rencontre : https://conferences.cirm-math.fr/3049.html

Données de citation

DOI : 10.24350/CIRM.V.20160203
Citer cette vidéo: Slepčev, Dejan (2024). Gradient flows for sampling and their deterministic interacting particle approximations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20160203
URI : http://dx.doi.org/10.24350/CIRM.V.20160203

Voir Aussi

Bibliographie

  • LU, Yulong, SLEPČEV, Dejan, et WANG, Lihan. Birth–death dynamics for sampling: global convergence, approximations and their asymptotics. Nonlinearity, 2023, vol. 36, no 11, p. 5731. - http://dx.doi.org/10.1088/1361-6544/acf988

  • PARK, Sangmin et SLEPČEV, Dejan. Geometry and analytic properties of the sliced Wasserstein space. arXiv preprint arXiv:2311.05134, 2023. - https://arxiv.org/abs/2311.05134

  • XU, Lantian, KORBA, Anna, et SLEPCEV, Dejan. Accurate quantization of measures via interacting particle-based optimization. In : International Conference on Machine Learning. PMLR, 2022. p. 24576-24595. - https://proceedings.mlr.press/v162/xu22d.html



Imagette Video

Sélection Signaler une erreur