En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Statistical learning in biological neural networks

Sélection Signaler une erreur
Multi angle
Auteurs : Schmidt-Hieber, Johannes (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Compared to artificial neural networks (ANNs), the brain seems to learn faster, generalize better to new situations and consumes much less energy. ANNs are motivated by the functioning of the brain but differ in several crucial aspects. While ANNs are deterministic, biological neural networks (BNNs) are stochastic. Moreover, it is biologically implausible that the learning of the brain is based on gradient descent. In the past years, statistical theory for artificial neural networks has been developed. The idea now is to extend this to biological neural networks, as the future of AI is likely to draw even more inspiration from biology. In this lecture series we will survey the challenges and present some first statistical risk bounds for different biologically inspired learning rules.

Mots-Clés : biological learning; neural networks; statistical estimation rates; supervised learning; zeroth-order methods

Codes MSC :
62J05 - Linear regression
62L20 - Stochastic approximation

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de Publication : 14/01/2025
    Date de Captation : 17/12/2024
    Sous Collection : Research School
    Catégorie arXiv : Machine Learning ; Statistics Theory
    Domaine(s) : Probabilités & Statistiques
    Format : MP4 (.mp4) - HD
    Durée : 00:57:30
    Audience : Chercheurs ; Etudiants Science Cycle 2 ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-17_Schmidt-Hieber.mp4

Informations sur la Rencontre

Nom de la Rencontre : New challenges in high-dimensional statistics / Statistique mathématique
Organisateurs de la Rencontre : Klopp, Olga ; Pouet, Christophe ; Rakhlin, Alexander
Dates : 16/12/2024 - 20/12/2024
Année de la rencontre : 2024
URL de la Rencontre : https://conferences.cirm-math.fr/3055.html

Données de citation

DOI : 10.24350/CIRM.V.20279603
Citer cette vidéo: Schmidt-Hieber, Johannes (2024). Statistical learning in biological neural networks. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20279603
URI : http://dx.doi.org/10.24350/CIRM.V.20279603

Voir Aussi

Bibliographie

  • SCHMIDT-HIEBER, Johannes. Interpreting learning in biological neural networks as zero-order optimization method. arXiv preprint arXiv:2301.11777, 2023. - https://doi.org/10.48550/arXiv.2301.11777

  • BOS, Thijs et SCHMIDT-HIEBER, Johannes. Convergence guarantees for forward gradient descent in the linear regression model. Journal of Statistical Planning and Inference, 2024, vol. 233, p. 106174. - https://doi.org/10.1016/j.jspi.2024.106174

  • SCHMIDT-HIEBER, Johannes et KOOLEN, Wouter M. Hebbian learning inspired estimation of the linear regression parameters from queries. arXiv preprint arXiv:2311.03483, 2023. - https://doi.org/10.48550/arXiv.2311.03483

  • DEXHEIMER, Niklas et SCHMIDT-HIEBER, Johannes. Improving the Convergence Rates of Forward Gradient Descent with Repeated Sampling. arXiv preprint arXiv:2411.17567, 2024. - https://doi.org/10.48550/arXiv.2411.17567



Imagette Video

Sélection Signaler une erreur