Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
The celebrated Fisher-Kolmogorov-Petrovsky-Piscounof equation (FKPP) in one dimension for
$h:\mathbb{R} \times \mathbb{R}^+ \to \mathbb{R}$ is:
$\partial_th = \partial{_x^2}h + h - h^2, h(x, 0) = h_0(x)$.
This equation is a natural description of a reaction-diffusion model (Fisher 1937, Kolmogorov et al. 1937, Aronson 1978). It is also related to branching Brownian motion: for the Heaviside initial condition $h_0 (x) = 1{_x<0}$ , $h(x, t)$ is the probability that the rightmost particle at time t in a branching Brownian motion (BBM) is to the right of $x$.
One of the beauty of this equation is that for initial conditions that decrease sufficiently fast, a front develops, i.e. there exists a centring term $m(t)$ and an asymptotic shape $\omega(x)$ such that
$\lim_{t \to \infty} h(m(t) + x,t) = \omega(x) \in (0, 1).$
Since the original paper of Kolmogorov et al., the position of the front $m(t)$ has been studied intensely, in particular by Bramson. In this talk, I will present some recent results concerning a prediction of Ebert and van Saarloos about the vanishing corrections of this position.
Based on a joint work with E. Brunet.
Codes MSC :
35K57
- Reaction-diffusion equations
60J80
- Branching processes (Galton-Watson, birth-and-death, etc.)
|
Informations sur la Rencontre
Nom de la rencontre : Random trees and maps: probabilistic and combinatorial aspects / Arbres et cartes aléatoires : aspects probabilistes et combinatoires Dates : 06/06/2016 - 10/06/2016
Année de la rencontre : 2016
URL Congrès : http://conferences.cirm-math.fr/1384.html
DOI : 10.24350/CIRM.V.18996203
Citer cette vidéo:
(2016). Vanishing corrections for the position of an FKPP front. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18996203
URI : http://dx.doi.org/10.24350/CIRM.V.18996203
|
Voir aussi
Bibliographie
- Berestycki, J., Brunet, E., Harris, S.C., & Roberts, Matthew I. (2015). Vanishing corrections for the position in a linear model of FKPP fronts. - https://arxiv.org/abs/1510.03329