Auteurs : Kerkyacharian, Gérard (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Since the last twenty years, Littlewood-Paley analysis and wavelet theory has proved to be a very useful tool for non parametric statistic. This is essentially due to the fact that the regularity spaces (Sobolev and Besov) could be characterized by wavelet coefficients. Then it appeared that that the Euclidian analysis is not always appropriate, and lot of statistical problems have their own geometry. For instance: Wicksell problem and Jacobi Polynomials, Tomography and the harmonic analysis of the ball, the study of the Cosmological Microwave Background and the harmonic analysis of the sphere. In these last years it has been proposed to build a Littlewood-Paley analysis and a wavelet theory associated to the Laplacien of a Riemannian manifold or more generally a positive operator associated to a suitable Dirichlet space with a good behavior of the associated heat kernel. This can help to revisit some classical studies of the regularity of Gaussian field.
Keywords: heat kernel - functional calculus - wavelet - Gaussian process
Codes MSC :
43A85
- Analysis on homogeneous spaces
58C50
- Analysis on supermanifolds or graded manifolds
60G15
- Gaussian processes
60G17
- Sample path properties
|
Informations sur la Rencontre
Nom de la rencontre : 30 years of wavelets / 30 ans des ondelettes Organisateurs de la rencontre : Feichtinger, Hans G. ; Torrésani, Bruno Dates : 23/01/15 - 24/01/15
Année de la rencontre : 2015
URL Congrès : https://www.chairejeanmorlet.com/1523.html
DOI : 10.24350/CIRM.V.18724103
Citer cette vidéo:
Kerkyacharian, Gérard (2015). Wavelet: from statistic to geometry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18724103
URI : http://dx.doi.org/10.24350/CIRM.V.18724103
|
Voir aussi
Bibliographie
- [1] Coulhon, T., Kerkyacharian, G., & Petrushev, P. (2012). Heat kernel generated frames in the setting of Dirichlet spaces. Journal of Fourier Analysis and Applications, 18(5), 995-1066 - http://dx.doi.org/10.1007/s00041-012-9232-7
- [2] Kerkyacharian, G., & Petrushev, P. (2015). Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet space. Transactions of the American Mathematical Society, 367(1), 121-189 - http://dx.doi.org/10.1090/S0002-9947-2014-05993-X