En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On local epsilon factors of the vanishing cycles of isolated singularities

Sélection Signaler une erreur
Multi angle
Auteurs : Takeuchi, Daichi (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The Hasse-Weil zeta function of a regular proper flat scheme over the integers is expected to extend meromorphically to the whole complex plane and satisfy a functional equation. The local epsilon factors of vanishing cycles are the local factors of the constant term in the functional equation. For their absolute values, Bloch proposed a conjecture, called Bloch's conductor formula, which describes them in terms of the Euler characteristics of a certain (complex of) coherent sheaf. In this talk, under the assumption that the non-smooth locus is isolated and that the residue characteristic is odd, I explain that the coherent sheaf appearing in the Bloch's conjecture is naturally endowed with a quadratic form and I would like to propose a conjecture that describes the local epsilon factors themselves in terms of the quadratic form. The conjecture holds true in the following cases: 1) for non-degenerate quadratic singularities, 2) for finite extensions of local fields, or 3) in the positive characteristic case.

Keywords : local epsilon factor; vanishing cycles; quadratic form

Codes MSC :
11E08 - Quadratic forms over local rings and fields
11G25 - Varieties over finite and local fields
14B05 - Singularities

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 27/06/2022
    Date de captation : 31/05/2022
    Sous collection : Research talks
    arXiv category : Algebraic Geometry ; Number Theory
    Domaine : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 01:04:42
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-05-31_Takeuchi.mp4

Informations sur la Rencontre

Nom de la rencontre : Franco-Asian Summer School on Arithmetic Geometry in Luminy / Ecole d'été franco-asiatique sur la géométrie arithmétique à Luminy
Organisateurs de la rencontre : Abbes, Ahmed ; Mézard, Ariane ; Saito, Takeshi ; Zheng, Weizhe
Dates : 30/05/2022 - 03/06/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2534.html

Données de citation

DOI : 10.24350/CIRM.V.19928403
Citer cette vidéo: Takeuchi, Daichi (2022). On local epsilon factors of the vanishing cycles of isolated singularities. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19928403
URI : http://dx.doi.org/10.24350/CIRM.V.19928403

Voir aussi

Bibliographie

  • TAKEUCHI, Daichi. Symmetric bilinear forms and local epsilon factors of isolated singularities in positive characteristic. arXiv preprint arXiv:2010.11022, 2020. - https://doi.org/10.48550/arXiv.2010.11022



Imagette Video

Sélection Signaler une erreur