En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Subgraph-based networks for expressive, efficient, and domain-independent graph learning

Sélection Signaler une erreur
Multi angle
Auteurs : Maron, Haggai (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : While message-passing neural networks (MPNNs) are the most popular architectures for graph learning, their expressive power is inherently limited. In order to gain increased expressive power while retaining efficiency, several recent works apply MPNNs to subgraphs of the original graph. As a starting point, the talk will introduce the Equivariant Subgraph Aggregation Networks (ESAN) architecture, which is a representative framework for this class of methods. In ESAN, each graph is represented as a set of subgraphs, selected according to a predefined policy. The sets of subgraphs are then processed using an equivariant architecture designed specifically for this purpose. I will then present a recent follow-up work that revisits the symmetry group suggested in ESAN and suggests that a more precise choice can be made if we restrict our attention to a specific popular family of subgraph selection policies. We will see that using this observation, one can make a direct connection between subgraph GNNs and Invariant Graph Networks (IGNs), thus providing new insights into subgraph GNNs' expressive power and design space.

Keywords : graph neural networks; Weisfeiler-leman; subgraphs

Codes MSC :
05C60 - Isomorphism problems (reconstruction conjecture, perfect graphs, etc.)
68R10 - Graph theory in connection with computer science
68T05 - Learning and adaptive systems

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2588/Slides/maron.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 05/12/2022
    Date de captation : 08/11/2022
    Sous collection : Research talks
    arXiv category : Machine Learning
    Domaine : Computer Science
    Format : MP4 (.mp4) - HD
    Durée : 00:49:40
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-11-08_Maron.mp4

Informations sur la Rencontre

Nom de la rencontre : Machine Learning and Signal Processing on Graphs / Apprentissage automatique et traitement du signal sur graphes
Organisateurs de la rencontre : Keriven, Nicolas ; Loukas, Andreas ; Pustelnik, Nelly ; Tremblay, Nicolas ; Vaiter, Samuel
Dates : 07/11/2022 - 11/11/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2588.html

Données de citation

DOI : 10.24350/CIRM.V.19982003
Citer cette vidéo: Maron, Haggai (2022). Subgraph-based networks for expressive, efficient, and domain-independent graph learning. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19982003
URI : http://dx.doi.org/10.24350/CIRM.V.19982003

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur