Auteurs : Kiselev, Alexander (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The patch solutions of the 2D Euler and (modified) SQG equations have form $\omega(x, t)=\chi_{\Omega(t)}(x)$ of a characteristic function of a domain $\Omega(t)$ evolving in time according to the Biot-Savart law $u=\nabla^{\perp}(-\Delta)^{-1+\alpha} \omega$, here $\alpha=0$ corresponds to the Euler case and $0<\alpha<1$ to the modified SQG family. For the Euler case, the first proof of global regularity for pathes was given by Chemin in Hölder spaces $C^{k, \beta}, 0<\beta<1$. For the modified SQG family, the problem remains largely open - with the only finite time singularity formation result available in the presence of boundary and for small $\alpha[5,2]$. I will discuss some recent conditional results on the possible scenarios for finite time blow up. Also, for the Euler patch case, I will describe a construction of patches that are $C^{2}$ at the initial and all integer times, but lack this regularity for all other times - without being time periodic. This result is based on the analysis of the curvature evolution equation, which may also be useful for other applications.
Keywords : 2D Euler equations; vortex patches; curvature; wellposedness; illposedness
Codes MSC :
35Q35
- PDEs in connection with fluid mechanics
76B03
- Existence, uniqueness, and regularity theory
|
Informations sur la Rencontre
Nom de la rencontre : MathFlows Organisateurs de la rencontre : Danchin, Raphaël ; Mucha, Piotr ; Tolksdorf, Patrick ; Zatorska, Ewelina Dates : 05/12/2022 - 09/12/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2638.html
DOI : 10.24350/CIRM.V.19984603
Citer cette vidéo:
Kiselev, Alexander (2022). Regularity of vortex and SQG patches. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19984603
URI : http://dx.doi.org/10.24350/CIRM.V.19984603
|
Voir aussi
Bibliographie
- CHEMIN, Jean-Yves. Persistance de structures géométriques dans les fluides incompressibles bidimensionnels. In : Annales scientifiques de l'Ecole normale supérieure. 1993. p. 517-542. - http://www.numdam.org/http://www.numdam.org/item?id=ASENS_1993_4_26_4_517_0
- GANCEDO, Francisco et PATEL, Neel. On the local existence and blow-up for generalized SQG patches. Annals of PDE, 2021, vol. 7, no 1, p. 1-63. - http://dx.doi.org/10.1007/s40818-021-00095-1
- KISELEV, Alexander et LUO, Xiaoyutao. On nonexistence of splash singularities for the $\alpha $-SQG patches. arXiv preprint arXiv:2111.13794, 2021. - https://doi.org/10.48550/arXiv.2111.13794
- KISELEV, Alexander et LUO, Xiaoyutao. Illposedness of $ C^{2} $ vortex patches. arXiv preprint arXiv:2204.06416, 2022. - https://doi.org/10.48550/arXiv.2204.06416
- KISELEV, Alexander, RYZHIK, Lenya, YAO, Yao, et al. Finite time singularity for the modified SQG patch equation. Annals of mathematics, 2016, p. 909-948. - https://www.jstor.org/stable/44072033