En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

de Rham theorem in non-Archimedean analytic geometry

Sélection Signaler une erreur
Multi angle
Auteurs : Berkovich, Vladimir (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In my work in progress on complex analytic vanishing cycles for formal schemes, I have defined integral "etale" cohomology groups of a compact strictly analytic space over the field of Laurent power series with complex coefficients. These are finitely generated abelian groups provided with a quasi-unipotent action of the fundamental group of the punctured complex plane, and they give rise to all $l$-adic etale cohomology groups of the space. After a short survey of this work, I will explain a theorem which, in the case when the space is rig-smooth, compares those groups and the de Rham cohomology groups of the space. The latter are provided with the Gauss-Manin connection and an additional structure which allow one to recover from them the "etale" cohomology groups with complex coefficients.

Codes MSC :
14F20 - Étale and other Grothendieck topologies and cohomologies
14F40 - de Rham cohomology
14G22 - Rigid analytic geometry
32P05 - Non-Archimedean complex analysis
32S30 - Deformations of singularities; vanishing cycles

Informations sur la Rencontre

Nom de la rencontre : $p$-adic analytic geometry and differential equations / Géométrie analytique et équations différentielles $p$-adiques
Organisateurs de la rencontre : Lebacque, Philippe ; Nicaise, Johannes ; Poineau, Jérôme
Dates : 27/03/17 - 31/03/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1609.html

Données de citation

DOI : 10.24350/CIRM.V.19153703
Citer cette vidéo: Berkovich, Vladimir (2017). de Rham theorem in non-Archimedean analytic geometry. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19153703
URI : http://dx.doi.org/10.24350/CIRM.V.19153703

Voir aussi

Bibliographie



Sélection Signaler une erreur