En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Multilevel and multi-index sampling methods with applications - Lecture 2: Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation

Sélection Signaler une erreur
Multi angle
Auteurs : Tempone, Raul (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We describe and analyze the Multi-Index Monte Carlo (MIMC) and the Multi-Index Stochastic Collocation (MISC) method for computing statistics of the solution of a PDE with random data. MIMC is both a stochastic version of the combination technique introduced by Zenger, Griebel and collaborators and an extension of the Multilevel Monte Carlo (MLMC) method first described by Heinrich and Giles. Instead of using first-order differences as in MLMC, MIMC uses mixed differences to reduce the variance of the hierarchical differences dramatically. These mixed differences yield new and improved complexity results, which are natural generalizations of Giles's MLMC analysis, and which increase the domain of problem parameters for which we achieve the optimal convergence. On the same vein, MISC is a deterministic combination technique based on mixed differences of spatial approximations and quadratures over the space of random data. Provided enough mixed regularity, MISC can achieve better complexity than MIMC. Moreover, we show that, in the optimal case, the convergence rate of MISC is only dictated by the convergence of the deterministic solver applied to a one-dimensional spatial problem. We propose optimization procedures to select the most effective mixed differences to include in MIMC and MISC. Such optimization is a crucial step that allows us to make MIMC and MISC computationally efficient. We show the effectiveness of MIMC and MISC in some computational tests using the mimclib open source library, including PDEs with random coefficients and Stochastic Interacting Particle Systems. Finally, we will briefly discuss the use of Markovian projection for the approximation of prices in the context of American basket options.

Keywords : Multi-index Monte Carlo; Multi-index Stochastic Collocation; optimal hierarchies; Partial Differential Equations with random inputs

Codes MSC :
35R60 - PDEs with randomness, stochastic PDE
60H15 - Stochastic partial differential equations
60H35 - Computational methods for stochastic equations
65C05 - Monte Carlo methods
65C30 - Stochastic differential and integral equations
65M70 - Spectral, collocation and related methods

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs17/Slides/tempone2.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/08/17
    Date de captation : 21/07/17
    Sous collection : Research School
    arXiv category : Probability ; Numerical Analysis
    Domaine : Numerical Analysis & Scientific Computing ; Probability & Statistics ; PDE
    Format : MP4 (.mp4) - HD
    Durée : 01:51:57
    Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-07-21_Tempone_Part2.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen
Organisateurs de la rencontre : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme
Dates : 17/07/17 - 25/08/17
Année de la rencontre : 2017
URL Congrès : http://conferences.cirm-math.fr/1556.html

Données de citation

DOI : 10.24350/CIRM.V.19200303
Citer cette vidéo: Tempone, Raul (2017). Multilevel and multi-index sampling methods with applications - Lecture 2: Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19200303
URI : http://dx.doi.org/10.24350/CIRM.V.19200303

Voir aussi

Bibliographie

  • Bayer, C., Häppölä, J., & Tempone, R. (2017). Implied stopping rules for American basket options from Markovian projection. - https://arxiv.org/abs/1705.00558

  • Haji-Ali, A.-L., Nobile, F., Tamellini, L., & Tempone, R. (2016). Multi-index stochastic collocation for random PDEs. Computer Methods in Applied Mechanics and Engineering, 306(1), 95–122 - http://dx.doi.org/10.1016/j.cma.2016.03.029

  • Haji-Ali, A.-L., Nobile, F., Tamellini, L., & Tempone, R. (2016). Multi-index stochastic collocation convergence rates for random PDEs with parametric regularity. Foundations of Computational Mathematics, 16(6), 1555-1605 - http://dx.doi.org/10.1007/s10208-016-9327-7

  • Haji-Ali, A.-L., Nobile, F., & Tempone, R. (2016). Multi-index Monte Carlo: when sparsity meets sampling. Numerische Mathematik, 132(4), 767-806 - http://dx.doi.org/10.1007/s00211-015-0734-5

  • Nobile, F., Tempone, R., & Wolfers, S. (2016). Sparse approximation of multilinear problems with applications to kernel-based methods in UQ. - https://arxiv.org/abs/1609.00246v2

  • Veretennikov, A.Y. (2006). On ergodic measures for McKean-Vlasov stochastic equations. In H. Niederreiter, & D. Talay (Eds.), Monte Carlo and quasi-Monte Carlo methods 2004 (pp. 471-486). Berlin: Springer - http://dx.doi.org/10.1007/3-540-31186-6_29



Sélection Signaler une erreur