En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On a difference between two methods of low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces

Sélection Signaler une erreur
Multi angle
Auteurs : Randrianantoanina, Beata (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In a recent paper, the speaker and M.I. Ostrovskii developed a new metric embedding method based on the theory of equal-signs-additive (ESA) sequences developed by Brunel and Sucheston in 1970's. This method was used to construct bilipschitz embeddings of diamond and Laakso graphs with an arbitrary finite number of branches into any non-superreflexive Banach space with a uniform bound on distortions that is independent of the number of branches.
In this talk we will outline a proof that the above mentioned embeddability results cannot be obtained using the embedding method which was used for trees by Bourgain (1986) and for binary branching diamonds and Laakso graphs by Johnson and Schechtman (2009), and which is based on a classical James' characterization of superreflexivity (the factorization between the summing basis and the unit vector basis of $\ell_1$). Our proof uses a “self-improvement” argument and the Ramsey theorem.
Joint work with M.I. Ostrovskii.

Keywords : diamond graph; equal-signs-additive sequence; metric characterization; superreflexive Banach space

Codes MSC :
05C12 - Distance in graphs
46B07 - Local theory of Banach spaces
46B10 - Duality and reflexivity
46B85 - Embeddings of discrete metric spaces into Banach spaces; applications
30L05 - Geometric embeddings of metric spaces

Ressources complémentaires :
https://www.cirm-math.fr/ProgWeebly/Renc1755/Randrianantoanina.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 14/03/2018
    Date de captation : 06/03/2018
    Sous collection : Research talks
    arXiv category : Functional Analysis ; Metric Geometry
    Domaine : Analysis and its Applications ; Geometry
    Format : MP4 (.mp4) - HD
    Durée : 00:47:10
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-03-06_Randrianantoanina.mp4

Informations sur la Rencontre

Nom de la rencontre : Non linear functional analysis / Analyse fonctionnelle non linéaire
Organisateurs de la rencontre : Albiac, Fernando ; Godefroy, Gilles ; Lancien, Gilles
Dates : 05/03/2018 - 09/03/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1755.html

Données de citation

DOI : 10.24350/CIRM.V.19371703
Citer cette vidéo: Randrianantoanina, Beata (2018). On a difference between two methods of low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19371703
URI : http://dx.doi.org/10.24350/CIRM.V.19371703

Voir aussi

Bibliographie

  • Ostrovskii, M.I., & Randrianantoanina, B. (2017). A new approach to low-distortion embeddings of finite metric spaces into non-superreflexive Banach spaces. - https://arxiv.org/abs/1609.06618



Sélection Signaler une erreur