En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Stable phase transitions: from nonlocal to local

Sélection Signaler une erreur
Multi angle
Auteurs : Serra, Joaquim (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The talk will review the motivations, state of the art, recent results, and open questions on four very related PDE models related to phase transitions: Allen-Cahn, Peierls-Nabarro, Minimal surfaces, and Nonlocal Minimal surfaces. We will focus on the study of stable solutions (critical points of the corresponding energy functionals with nonnegative second variation). We will discuss new nonlocal results on stable phase transitions, explaining why the stability assumption gives stronger information in presence of nonlocal interactions. We will also comment on the open problems and obstructions in trying to make the nonlocal estimates robust as the long-range (or nonlocal) interactions become short-range (or local).

Keywords : phase transition; nonlocal minimal surfaces; stability; short-range interaction; long-range interaction

Codes MSC :
35B35 - Stability of solutions of PDE
49Q05 - Minimal surfaces
53A10 - Minimal surfaces, surfaces with prescribed mean curvature
82B26 - Phase transitions (general)
35R11 - Fractional partial differential equations

Ressources complémentaires :
https://www.cirm-math.fr/ProgWeebly/Renc1862/Serra.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 14/01/2019
    Date de captation : 12/12/2018
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : PDE
    Format : MP4 (.mp4) - HD
    Durée : 00:58:32
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-12-12_Serra.mp4

Informations sur la Rencontre

Nom de la rencontre : Non standard diffusions in fluids, kinetic equations and probability / Diffusions non standards en mécanique des fluides, équations cinétiques et probabilités
Organisateurs de la rencontre : Imbert, Cyril ; Mouhot, Clément ; Tristani, Isabelle
Dates : 10/12/2018 - 14/12/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1862.html

Données de citation

DOI : 10.24350/CIRM.V.19483203
Citer cette vidéo: Serra, Joaquim (2018). Stable phase transitions: from nonlocal to local. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19483203
URI : http://dx.doi.org/10.24350/CIRM.V.19483203

Voir aussi

Bibliographie

  • Cabré, X., Cinti, E., & Serra, J. (2018). Flatness of stable nonlocal phase transitions in in $\mathbb {R}^ 3$, forthcoming preprint -

  • Cabré, X., Cinti, E., & Serra, J. (2017). Stable $s$-minimal cones in $\mathbb {R}^ 3$ are flat for $s\sim 1$.〈arXiv:1710.08722〉 - https://arxiv.org/abs/1710.08722

  • Cinti, E., Serra, J., & Valdinoci, E. Quantitative flatness results and BV-estimates for nonlocal minimal surfaces, to appear in Journal of Differential Geometry -

  • Dipierro, S., Serra, J., & Valdinoci, E. Improvement of flatness for nonlocal phase transitions, to appear in American Journal of Mathematics -

  • Figalli, A., & Serra, J. (2017). On stable solutions for boundary reactions: a De Giorgi type result in dimension 4+1.〈arXiv:1705.02781〉 - https://arxiv.org/abs/1705.02781



Sélection Signaler une erreur