Auteurs : Masser, David (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
It is classical that, for example, there is a simple abelian variety of dimension $4$ which is not the jacobian of any curve of genus $4$, and it is not hard to see that there is one defined over the field of all algebraic numbers $\overline{\bf Q}$. In $2012$ Chai and Oort asked if there is a simple abelian fourfold, defined over $\overline{\bf Q}$, which is not even isogenous to any jacobian. In the same year Tsimerman answered ''yes''. Recently Zannier and I have done this over the rationals $\bf Q$, and with ''yes, almost all''. In my talk I will explain ''almost all'' the concepts involved.
Codes MSC :
11G10
- Abelian varieties of dimension >1
14H40
- Jacobians, Prym varieties
14K02
- Isogeny
14K15
- Arithmetic ground fields
|
Informations sur la Rencontre
Nom de la rencontre : Diophantine geometry / Géométrie diophantienne Organisateurs de la rencontre : Bosser, Vincent ; Carrizosa, Maria ; Gaudron, Eric ; Habegger, Philipp Dates : 21/05/2018 - 25/05/2018
Année de la rencontre : 2018
URL Congrès : https://conferences.cirm-math.fr/1754.html
DOI : 10.24350/CIRM.V.19408303
Citer cette vidéo:
Masser, David (2018). Avoiding Jacobians. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19408303
URI : http://dx.doi.org/10.24350/CIRM.V.19408303
|
Voir aussi
Bibliographie
- Chai, Ching-Li; Oort, Frans (2012). Abelian varieties isogenous to a Jacobian. Ann. Math. (2) 176, No. 1, 589-635 - https://doi.org/10.4007/annals.2012.176.1.11
- Masser, D.W., & Wüstholz, G. (1994). Endomorphism estimates for abelian varieties. Mathematische Zeitschrift, 215(4), 641-653 - https://doi.org/10.1007/BF02571735
- Tsimerman, J. (2012). Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points. Journal of the American Mathematical Society, 25(4), 1091-1117 - https://doi.org/10.1090/S0894-0347-2012-00739-5
- Tsimerman, J. (2012). The existence of an abelian variety over $\overline{\bf Q}$ isogenous to no Jacobian. Annals of Mathematics, 176(1), 637-650 - https://doi.org/10.4007/annals.2012.176.1.12