m

F Nous contacter


0
     
Post-edited

H 2 Gradient discretisations : tools and applications

Auteurs : Eymard, Robert (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
p-Laplace problem with homogeneous Dirichlet boundary condition general boundary conditions abstract formulation application to general boundary conditions application to mechanic approximations

Résumé : Some convergence properties for the approximation of second order elliptic problems with a variety of boundary conditions (homogeneous Dirichlet, homogeneous or non-homogeneous Neumann or Fourier boundary conditions), using a given discretisation method, can be obtained when this method is plugged into the Gradient Discretisation Method (GDM) framework.
Instead of defining one GDM framework for each of these boundary conditions, we show that these properties can be stated using the same abstract tools for all the above boundary conditions. Then these tools enable the application of the GDM to a larger class of elliptic problems.

Codes MSC :
47A58 - Operator approximation theory
65J05 - General theory
65Nxx - Partial differential equations, boundary value problems

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 28/05/2019
    Date de captation : 29/04/2019
    Collection : Research talks ; Numerical Analysis and Scientific Computing ; Partial Differential Equations
    Format : MP4 (.mp4) - HD
    Durée : 00:39:36
    Domaine : PDE ; Numerical Analysis & Scientific Computing
    Audience : Chercheurs ; Doctorants , Post - Doctorants
    Download : https://videos.cirm-math.fr/2019-04-29_Eymard.mp4

Informations sur la rencontre

Nom de la rencontre : POEMs - POlytopal Element Methods in Mathematics and Engineering
Organisateurs de la rencontre : Antonietti, Paola ; Beirão da Veiga, Lourenço ; Di Pietro, Daniele ; Droniou, Jérôme ; Krell, Stella
Dates : 29/04/2019 - 03/05/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1954.html

Citation Data

DOI : 10.24350/CIRM.V.19528603
Cite this video as: Eymard, Robert (2019). Gradient discretisations : tools and applications. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19528603
URI : http://dx.doi.org/10.24350/CIRM.V.19528603

Voir aussi

Bibliographie

  • Jérôme Droniou, Robert Eymard, Thierry Gallouët, Raphaèle Herbin. A unified analysis of elliptic problems with various boundary conditions and their approximation. 2019. - https://hal.archives-ouvertes.fr/hal-01823265

  • Jérôme Droniou, Robert Eymard, Thierry Gallouët, Cindy Guichard, Raphaele Herbin. The gradient discretisation method. Springer International Publishing AG, 82, 2018, Mathématiques et Applications, M. Hoffmann et V. Perrier, 978-3-319-79042-8. - https://hal.archives-ouvertes.fr/hal-01382358



Z