En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces

Sélection Signaler une erreur
Multi angle
Auteurs : Ohnita, Yoshihiro (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : An $R$-space is a compact homogeneous space obtained as an orbit of the isotropy representation of a Riemannian symmetric space. It is known that each $R$-space has the canonical embedding into a Kähler $C$-space as a real form which is a compact embedded totally geodesic Lagrangian submanifold. The minimal Maslov number of Lagrangian submanifolds in symplectic manifolds is an invariant under Hamiltonian isotopies and very fundamental to the study of the Floer homology for intersections of Lagrangian submanifolds. In this talk we provide a Lie theoretic formula for the minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces and discuss several examples of the calculation by the formula.

Keywords : $R$-spaces; Eintein-Kähler $C$-spaces; monotone Lagrangian submanifolds; minimal Maslov number

Codes MSC :
53C25 - Special Riemannian manifolds (Einstein, Sasakian, etc.)
53C55 - Hermitian and Kählerian manifolds (global differential geometry)

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/1936/Slides/ohnita.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 18/06/2019
    Date de captation : 29/05/2019
    Sous collection : Research talks
    arXiv category : Differential Geometry ; Symplectic Geometry
    Domaine : Geometry
    Format : MP4 (.mp4) - HD
    Durée : 00:59:10
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-05-29_Ohnita.mp4

Informations sur la Rencontre

Nom de la rencontre : Problèmes variationnels et géométrie des sous-variétés / Variational Problems and the Geometry of Submanifolds
Organisateurs de la rencontre : Alias, Luis J. ; Loubeau, Eric ; Mazet, Laurent ; Montaldo, Stefano ; Soret, Marc ; Ville, Marina
Dates : 27/05/2019 - 31/05/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/1936.html

Données de citation

DOI : 10.24350/CIRM.V.19533103
Citer cette vidéo: Ohnita, Yoshihiro (2019). Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19533103
URI : http://dx.doi.org/10.24350/CIRM.V.19533103

Voir aussi

Bibliographie

  • BOREL, Armand et HIRZEBRUCH, Friedrich. Characteristic classes and homogeneous spaces, I. American Journal of Mathematics, 1958, vol. 80, no 2, p. 458-538. - https://doi.org/10.2307/2372795

  • ONO, Hajime. Integral formula of Maslov index and its applications. Japanese journal of mathematics. New series, 2004, vol. 30, no 2, p. 413-421. - https://doi.org/10.4099/math1924.30.413

  • SATAKE, Ichirô. On representations and compactifications of symmetric Riemannian spaces. Annals of Mathematics, 1960, p. 77-110. - https://doi.org/10.2307/1969880

  • TAKEUCHI, Masaru. Cell decompositions and Morse equalities on certain symmetric spaces. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1965, vol. 12, p. 81-192. -

  • TAKEUCHI, Masaru, KOBAYASHI, Shoshichi, et al. Minimal imbeddings of $ R $-spaces. Journal of Differential Geometry, 1968, vol. 2, no 2, p. 203-215. - https://doi.org/10.4310/jdg/1214428257

  • TAKEUCHI, Masaru. Homogeneous Kähler submanifolds in complex projective spaces. Japanese journal of mathematics. New series, 1978, vol. 4, no 1, p. 171-219. - https://doi.org/10.4099/math1924.4.171

  • TAKEUCHI, Masaru. Stability of certain minimal submanifolds of compact Hermitian symmetric spaces. Tohoku Mathematical Journal, Second Series, 1984, vol. 36, no 2, p. 293-314. - https://doi.org/10.2748/tmj/1178228853

  • OHNITA, Yoshihiro. Minimal Maslov number of $R$-spaces canonically embedded in Einstein-Kähler $C$-spaces. Preprint submitted to Complex Manifolds. OCAMI Preprint Ser. 18-8. - http://www.sci.osaka-cu.ac.jp/OCAMI/publication/preprint/pdf2018/18_08.pdf

  • OHNITA, YOSHIHIRO. Geometry of Lagrangian submanifolds and isoparametric hypersurfaces. In : Proceedings of The Fourteenth International Workshop on Differential Geometry. 2010. p. 43-67. - http://www.sci.osaka-cu.ac.jp/~ohnita/paper/2010OhnitaProcKNUGRG.pdf

  • MA, Hui, OHNITA, Yoshihiro, et al. Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces, I. Journal of Differential Geometry, 2014, vol. 97, no 2, p. 275-348. - https://doi.org/10.4310/jdg/1405447807

  • IRIYEH, Hiroshi, MA, Hui, MIYAOKA, Reiko, et al. Hamiltonian non‐displaceability of Gauss images of isoparametric hypersurfaces. Bulletin of the London Mathematical Society, 2016, vol. 48, no 5, p. 802-812. - https://doi.org/10.1112/blms/bdw040



Sélection Signaler une erreur