https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Descent in Bruhat-Tits theory
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Descent in Bruhat-Tits theory

Sélection Signaler une erreur
Post-edited
Auteurs : Prasad, Gopal (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...
reductive groups Bruhat-Tits theory unramified descent

Résumé : Bruhat-Tits theory applies to a semisimple group G, defined over an henselian discretly valued field K, such that G admits a Borel K-subgroup after an extension of K. The construction of the theory goes then by a deep Galois descent argument for the building and also for the parahoric group scheme. In the case of unramified extension, that descent has been achieved by Bruhat-Tits at the end of [BT2]. The tamely ramified case is due to G. Rousseau [R]. Recently, G. Prasad found a new way to investigate the descent part of the theory. This is available in the preprints [Pr1, Pr2] dealing respectively with the unramified case and the tamely ramified case. It is much shorter and the method is based more on fine geometry of the building (e.g. galleries) than algebraic groups techniques.

Keywords : linear algebraic groups; buildings

Codes MSC :
20E42 - Groups with a $BN$-pair; buildings, See also {51E24}
20G15 - Linear algebraic groups over arbitrary fields
51E24 - Buildings and the geometry of diagrams

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 20/09/2019
    Date de captation : 28/08/2019
    Sous collection : Research School
    arXiv category : Group Theory
    Domaine : Algebraic & Complex Geometry ; Lie Theory and Generalizations ; Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 01:33:03
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-08-28_G_Prasad.mp4

Informations sur la Rencontre

Nom de la rencontre : Buildings and Affine Grassmannians / Immeubles et grassmanniennes affines
Organisateurs de la rencontre : Fauquant-Millet, Florence ; Fedorov, Roman ; Gille, Philippe ; Loisel, Benoît ; Ressayre, Nicolas
Dates : 26/08/2019 - 06/09/2019
Année de la rencontre : 2019
URL Congrès : https://conferences.cirm-math.fr/2067.html

Données de citation

DOI : 10.24350/CIRM.V.19559103
Citer cette vidéo: Prasad, Gopal (2019). Descent in Bruhat-Tits theory. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19559103
URI : http://dx.doi.org/10.24350/CIRM.V.19559103

Voir aussi

Bibliographie



Sélection Signaler une erreur