En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Fano foliations 0 - Algebraicity of smooth formal schemes and applications to foliations - lecture 1

Sélection Signaler une erreur
Virtualconference
Auteurs : Druel, Stéphane (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : In the last few decades, much progress has been made in birational algebraic geometry. The general viewpoint is that complex projective manifolds should be classified according to the behavior of their canonical class. As a result of the minimal model program (MMP), every complex projective manifold can be built up from 3 classes of (possibly singular) projective varieties, namely, varieties $X$ for which $K_X$ satisfies $K_X<0$, $K_X\equiv 0$ or $K_X>0$. Projective manifolds $X$ whose anti-canonical class $-K_X$ is ample are called Fano manifolds.

Techniques from the MMP have been successfully applied to the study of global properties of holomorphic foliations. This led, for instance, to Brunella's birational classification of foliations on surfaces, in which the canonical class of the foliation plays a key role. In recent years, much progress has been made in higher dimensions. In particular, there is a well developed theory of Fano foliations, i.e., holomorphic foliations $F$ on complex projective varieties with ample anti-canonical class $-K_F$.

This mini-course is devoted to reviewing some aspects of the theory of Fano Foliations, with a special emphasis on Fano foliations of large index. We start by proving a fundamental algebraicity property of Fano foliations, as an application of Bost's criterion of algebraicity for formal schemes. We then introduce and explore the concept of log leaves. These tools are then put together to address the problem of classifying Fano foliations of large index.

Keywords : algebraic geometry; foliations

Codes MSC :
37F75 - Holomorphic foliations and vector fields

Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/algebraization.pdf
https://www.cirm-math.com/uploads/2/6/6/0/26605521/problems.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 06/05/2020
    Date de captation : 30/04/2020
    Sous collection : Research School
    arXiv category : Algebraic Geometry
    Domaine : Algebraic & Complex Geometry
    Format : MP4 (.mp4) - HD
    Durée : 00:42:55
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-04-30_Druel_Part1.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages
Organisateurs de la rencontre : Druel, Stéphane ; Pereira, Jorge Vitório ; Rousseau, Erwan
Dates : 18/05/2020 - 22/05/2020
Année de la rencontre : 2020
URL Congrès : https://www.chairejeanmorlet.com/2251.html

Données de citation

DOI : 10.24350/CIRM.V.19630603
Citer cette vidéo: Druel, Stéphane (2020). Fano foliations 0 - Algebraicity of smooth formal schemes and applications to foliations - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19630603
URI : http://dx.doi.org/10.24350/CIRM.V.19630603

Voir aussi

Bibliographie

  • Araujo Carolina, Druel Stéphane: Characterization of generic projective space bundles and algebraicity of foliations. Comment. Math. Helv. 94 (2019), 833-853 - http://dx.doi.org/10.4171/CMH/475

  • ARAUJO, Carolina et DRUEL, Stéphane. On Fano foliations 2. In : Foliation Theory in Algebraic Geometry. Springer, Cham, 2016. p. 1-20. - https://doi.org/10.1007/978-3-319-24460-0_1

  • ARAUJO, Carolina et DRUEL, Stéphane. On fano foliations. Advances in Mathematics, 2013, vol. 238, p. 70-118. - https://doi.org/10.1016/j.aim.2013.02.003

  • CAMPANA, Frédéric et PĂUN, Mihai. Foliations with positive slopes and birational stability of orbifold cotangent bundles. Publications mathématiques de l'IHÉS, 2019, vol. 129, no 1, p. 1-49. - https://doi.org/10.1007/s10240-019-00105-w

  • BOGOMOLOV, Fedor et MCQUILLAN, Michael. Rational curves on foliated varieties. In : Foliation theory in algebraic geometry. Springer, Cham, 2016. p. 21-51. - http://dx.doi.org/10.1007/978-3-319-24460-0_2

  • Bost, Jean-Benoît. Algebraic leaves of algebraic foliations over number fields. Publications Mathématiques de l'IHÉS, Tome 93 (2001) , pp. 161-221 - http://www.numdam.org/item/PMIHES_2001__93__161_0/

  • Bost, J.-B.; Germs of analytic varieties in algebraic varieties: canonical metrics and arithmetic algebraization theorems ii. In: Adolphson, A., Baldassarri, F., Berthelot, P., Katz, N., Loeser, F. (eds.) Geometric Aspects of Dwork Theory, vol. I. Walter de
    Gruyter II, Berlin (2004). -



Imagette Video

Sélection Signaler une erreur