En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Isotonic Distributional Regression (IDR) - leveraging monotonicity, uniquely so!

Sélection Signaler une erreur
Virtualconference
Auteurs : Gneiting, Tilmann (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : There is an emerging consensus in the transdiciplinary literature that the ultimate goal of regression analysis is to model the conditional distribution of an outcome, given a set of explanatory variables or covariates. This new approach is called "distributional regression", and marks a clear break from the classical view of regression, which has focused on estimating a conditional mean or quantile only. Isotonic Distributional Regression (IDR) learns conditional distributions that are simultaneously optimal relative to comprehensive classes of relevant loss functions, subject to monotonicity constraints in terms of a partial order on the covariate space. This IDR solution is exactly computable and does not require approximations nor implementation choices, except for the selection of the partial order. Despite being an entirely generic technique, IDR is strongly competitive with state-of-the-art methods in a case study on probabilistic precipitation forecasts from a leading numerical weather prediction model.

Joint work with Alexander Henzi and Johanna F. Ziegel.

Keywords : Conditional distribution estimation; continuous ranked probability score; ensemble methods; monotonicity; probabilistic forecast; proper scoring rule; stochastic order; weather prediction

Codes MSC :
62J02 - General nonlinear regression
68T09 - Computational aspects of data analysis and big data

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2146/Slides/GneitingTilman.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 15/06/2020
    Date de captation : 02/06/2020
    Sous collection : Research talks
    arXiv category : Machine Learning ; Computer Science
    Domaine : Mathematics in Science & Technology ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:01:17
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-06-02_Gneiting.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL Congrès : https://www.cirm-math.com/cirm-virtual-...

Données de citation

DOI : 10.24350/CIRM.V.19640703
Citer cette vidéo: Gneiting, Tilmann (2020). Isotonic Distributional Regression (IDR) - leveraging monotonicity, uniquely so!. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19640703
URI : http://dx.doi.org/10.24350/CIRM.V.19640703

Voir aussi

Bibliographie



Sélection Signaler une erreur