En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Treatment effect estimation with missing attributes

Sélection Signaler une erreur
Virtualconference
Auteurs : Josse, Julie (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Inferring causal effects of a treatment or policy from observational data is central to many applications. However, state-of-the-art methods for causal inference suffer when covariates have missing values, which is ubiquitous in application.
Missing data greatly complicate causal analyses as they either require strong assumptions about the missing data generating mechanism or an adapted unconfoundedness hypothesis. In this talk, I will first provide a classification of existing methods according to the main underlying assumptions, which are based either on variants of the classical unconfoundedness assumption or relying on assumptions about the mechanism that generates the missing values. Then, I will present two recent contributions on this topic: (1) an extension of doubly robust estimators that allows handling of missing attributes, and (2) an approach to causal inference based on variational autoencoders adapted to incomplete data.
I will illustrate the topic an an observational medical database which has heterogeneous data and a multilevel structure to assess the impact of the administration of a treatment on survival.

Keywords : Causal inference; missing values; average treatment effect; double robust methods; generalized random forest; latent variables models

Codes MSC :
62H12 - Multivariate estimation
62N99 - None of the above but in this section
62P10 - Applications of statistics to biology and medical sciences

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2146/Slides/Josse.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 15/06/2020
    Date de captation : 08/06/2020
    Sous collection : Research talks
    arXiv category : Statistics Theory
    Domaine : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:29:00
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-06-04_Josse.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL Congrès : https://www.cirm-math.com/cirm-virtual-...

Données de citation

DOI : 10.24350/CIRM.V.19641503
Citer cette vidéo: Josse, Julie (2020). Treatment effect estimation with missing attributes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19641503
URI : http://dx.doi.org/10.24350/CIRM.V.19641503

Voir aussi

Bibliographie

  • MAYER, Imke, JOSSE, Julie, RAIMUNDO, Félix, et al. MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models. arXiv preprint arXiv:2002.10837, 2020. - https://arxiv.org/abs/2002.10837

  • MAYER, Imke, WAGER, Stefan, GAUSS, Tobias, et al. Doubly robust treatment effect estimation with missing attributes. arXiv preprint arXiv:1910.10624, 2019. - https://arxiv.org/abs/1910.10624

  • JOSSE, Julie, PROST, Nicolas, SCORNET, Erwan, et al. On the consistency of supervised learning with missing values. arXiv preprint arXiv:1902.06931, 2019. - https://arxiv.org/abs/1902.06931



Imagette Video

Sélection Signaler une erreur