Auteurs : Miasojedow, Błażej (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
The continuous time Bayesian networks (CTBNs) represent a class of stochastic processes, which can be used to model complex phenomena, for instance, they can describe interactions occurring in living processes, in social science models or in medicine. The literature on this topic is usually focused on the case, when the dependence structure of a system is known and we are to determine conditional transition intensities (parameters of the network). In the paper, we study the structure learning problem, which is a more challenging task and the existing research on this topic is limited. The approach, which we propose, is based on a penalized likelihood method. We prove that our algorithm, under mild regularity conditions, recognizes the dependence structure of the graph with high probability. We also investigate the properties of the procedure in numerical studies to demonstrate its effectiveness .
Keywords : Bayesian networks; continuous time Bayesian networks; continuous time Markov processes; Lasso penalty; model selection
Codes MSC :
60J27
- Continuous-time Markov processes on discrete state spaces
62F30
- Inference under constraints
62M05
- Markov processes: estimation
Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2146/Slides/Miasojedow.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2 Organisateurs de la rencontre : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne Dates : 15/06/2020 - 19/06/2020
Année de la rencontre : 2020
URL Congrès : https://www.cirm-math.com/cirm-virtual-...
DOI : 10.24350/CIRM.V.19646103
Citer cette vidéo:
Miasojedow, Błażej (2020). Structure learning for CTBN's. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19646103
URI : http://dx.doi.org/10.24350/CIRM.V.19646103
|
Voir aussi
-
[Virtualconference]
Experimenting in equilibrium
/ Auteur de la Conférence Wager, Stefan.
-
[Virtualconference]
The price of competition: effect size heterogeneity matters in high dimensions!
/ Auteur de la Conférence Wang, Hua.
-
[Virtualconference]
Scaling of scoring rules
/ Auteur de la Conférence Wallin, Jonas.
-
[Virtualconference]
Hierarchical bayes modeling for large-scale inference
/ Auteur de la Conférence Yekutieli, Daniel.
-
[Virtualconference]
Change: detection, estimation, segmentation
/ Auteur de la Conférence Siegmund, David.
-
[Virtualconference]
High-dimensional, multiscale online changepoint detection
/ Auteur de la Conférence Samworth, Richard.
-
[Virtualconference]
The smoothed multivariate square-root Lasso: an optimization lens on concomitant estimation
/ Auteur de la Conférence Salmon, Joseph.
-
[Virtualconference]
Knockoff genotypes: value in counterfeit
/ Auteur de la Conférence Sabatti, Chiara.
-
[Virtualconference]
Optimal and maximin procedures for multiple testing problems
/ Auteur de la Conférence Rosset, Saharon.
-
[Virtualconference]
Sparse multiple testing: can one estimate the null distribution ?
/ Auteur de la Conférence Roquain, Etienne.
-
[Virtualconference]
Bayesian spatial adaptation
/ Auteur de la Conférence Rockova, Veronika.
-
[Virtualconference]
Universal inference using the split likelihood ratio test
/ Auteur de la Conférence Ramdas, Aaditya K..
-
[Virtualconference]
How to estimate a density on a spider web ?
/ Auteur de la Conférence Picard, Dominique.
-
[Virtualconference]
Post hoc bounds on false positives using reference families
/ Auteur de la Conférence Neuvial, Pierre.
-
[Virtualconference]
Quasi logistic distributions and Gaussian scale mixing
/ Auteur de la Conférence Letac, Gerard.
-
[Virtualconference]
Shrinkage estimation of mean for complex multivariate normal distribution with unknown covariance when p > n
/ Auteur de la Conférence Konno, Yoshihiko.
-
[Virtualconference]
Treatment effect estimation with missing attributes
/ Auteur de la Conférence Josse, Julie.
-
[Virtualconference]
Floodgate: inference for model-free variable importance
/ Auteur de la Conférence Janson, Lucas.
-
[Virtualconference]
On Cholesky structures on real symmetric matrices and their applications
/ Auteur de la Conférence Ishi, Hideyuki.
-
[Virtualconference]
Optimal control of false discovery criteria in the general two-group model
/ Auteur de la Conférence Heller, Ruth.
-
[Virtualconference]
Isotonic Distributional Regression (IDR) - leveraging monotonicity, uniquely so!
/ Auteur de la Conférence Gneiting, Tilmann.
-
[Virtualconference]
De-biasing arbitrary convex regularizers and asymptotic normality
/ Auteur de la Conférence Bellec, Pierre C..
-
[Virtualconference]
Consistent model selection criteria and goodness-of-fit test for common time series models
/ Auteur de la Conférence Bardet, Jean-Marc.
-
[Virtualconference]
High-dimensional classification by sparse logistic regression
/ Auteur de la Conférence Abramovich, Felix.
Bibliographie
- LEZAUD, Pascal. Chernoff-type bound for finite Markov chains. Annals of Applied Probability, 1998, p. 849-867. - http://dx.doi.org/10.1214/aoap/1028903453
- LINZNER, Dominik et KOEPPL, Heinz. Cluster variational approximations for structure learning of continuous-time Bayesian networks from incomplete data. In : Advances in Neural Information Processing Systems. 2018. p. 7880-7890. - http://papers.nips.cc/paper/8013-cluster-variational-approximations-for-structure-learning-of-continuous-time-bayesian-networks-from-incomplete-data.pdf
- LINZNER, Dominik, SCHMIDT, Michael, et KOEPPL, Heinz. Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data. In : Advances in Neural Information Processing Systems. 2019. p. 3741-3751. - https://arxiv.org/abs/1909.04570
- NODELMAN, Uri. Continuous Time Bayesian Networks. PhD thesis, Department of Computer Science,
Stanford University, 2007. - https://ai.stanford.edu/~nodelman/papers/ctbn-thesis.pdf