En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Equivalent curves on surfaces

Sélection Signaler une erreur
Multi angle
Auteurs : Xu, Binbin (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider a closed oriented surface of genus at least 2. For any positive integer k, an essential closed curve on the surface with k self-intersections is called a k-curve. A pair of curves on the surface are said to be k-equivalent, if they have the same intersection numbers with each k-curve. In this talk, I will discuss the general picture of a pair of k-equivalent curves and the relation between k-equivalence relations for different k's.
This is a joint-work with Hugo Parlier

Codes MSC :
57M99 - None of the above but in this section

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 23/10/2020
    Date de captation : 05/10/2020
    Sous collection : Research talks
    arXiv category : Combinatorics ; Geometric Topology
    Domaine : Combinatorics ; Topology
    Format : MP4 (.mp4) - HD
    Durée : 00:57:34
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-10-05_Xu.mp4

Informations sur la Rencontre

Nom de la rencontre : Teichmüller Theory: Classical, Higher, Super and Quantum / Théorie de Teichmüller : classique, supérieure, super et quantique
Organisateurs de la rencontre : Ohshika, Ken'ichi ; Papadopoulos, Athanase ; Penner, Robert C. ; Wienhard, Anna
Dates : 05/10/2020 - 10/10/2020
Année de la rencontre : 2020
URL Congrès : https://conferences.cirm-math.fr/2216.html

Données de citation

DOI : 10.24350/CIRM.V.19656903
Citer cette vidéo: Xu, Binbin (2020). Equivalent curves on surfaces. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19656903
URI : http://dx.doi.org/10.24350/CIRM.V.19656903

Voir aussi

Bibliographie



Sélection Signaler une erreur