En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Zaremba's conjecture and growth in groups

Sélection Signaler une erreur
Virtualconference
Auteurs : Shkredov, Ilya (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Zaremba's conjecture belongs to the area of continued fractions. It predicts that for any given positive integer q there is a positive a, a < q, (a,q)=1 such that all partial quotients b_j in its continued fractions expansion a/q = 1/b_1+1/b_2 +... + 1/b_s are bounded by five. At the moment the question is widely open although the area has a rich history of works by Korobov, Hensley, Niederreiter, Bourgain and many others. We survey certain results concerning this hypothesis and show how growth in groups helps to solve different relaxations of Zaremba's conjecture. In particular, we show that a deeper hypothesis of Hensley concerning some Cantor-type set with the Hausdorff dimension >1/2 takes place for the so-called modular form of Zaremba's conjecture.

Keywords : continued fractions; diophantine approximations; growth in groups; Chevalley groups

Codes MSC :
11A55 - Continued fractions, {For approximation results, See 11J70; See also 11K50, 30B70, 40A15}
11J70 - Continued fractions and generalizations
20G05 - Representation theory of linear algebraic groups
20G40 - Linear algebraic groups over finite fields
11B30 - Arithmetic combinatorics; higher degree uniformity

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 01/12/2020
    Date de captation : 25/11/2020
    Sous collection : Research talks
    arXiv category : Number Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:53:20
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-11-25 Shkredov.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Organisateurs de la rencontre : Rivat, Joël ; Tichy, Robert
Dates : 23/11/2020 - 27/11/2020
Année de la rencontre : 2020
URL Congrès : https://www.chairejeanmorlet.com/2256.html

Données de citation

DOI : 10.24350/CIRM.V.19689203
Citer cette vidéo: Shkredov, Ilya (2020). Zaremba's conjecture and growth in groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19689203
URI : http://dx.doi.org/10.24350/CIRM.V.19689203

Voir aussi

Bibliographie

  • HENSLEY, Doug. Continued fraction Cantor sets, Hausdorff dimension, and functional analysis. Journal of number theory, 1992, vol. 40, no 3, p. 336-358. - https://doi.org/10.1016/0022-314X(92)90006-B

  • HELFGOTT, Harald Andrés. Growth and generation in $SL_2 (\mathbb{Z}/p\mathbb{Z})$. Annals of Mathematics, 2008, p. 601-623. - https://www.jstor.org/stable/40345357

  • KOROBOV, Nikolai Mikhailovich. Number-theoretic methods in approximate analysis. 1963. -

  • SARNAK, Peter, XUE, Xiaoxi, et al. Bounds for multiplicities of automorphic representations. Duke Mathematical Journal, 1991, vol. 64, no 1, p. 207-227. - http://dx.doi.org/10.1215/S0012-7094-91-06410-0

  • ZAREMBA, Stanisłlaw K. La méthode des “bons treillis” pour le calcul des intégrales multiples. In : Applications of number theory to numerical analysis. Academic Press, 1972. p. 39-119. - https://doi.org/10.1016/B978-0-12-775950-0.50009-1



Sélection Signaler une erreur