En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Complications making amplitude equations in fluid mechanics

Sélection Signaler une erreur
Multi angle
Auteurs : Drysdale, Catherine (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Owing to the interaction between modes, difficulties arise in creating amplitude equations where non-normality and nonlinearity is present in the original system. For example, if amplitude equations are made via weakly nonlinear analysis, then approximating via the critical mode only (least stable eigenvalue) does not work at higher orders where the mixing of the modes needs to be taken into consideration. However, using a different homogenisation technique, namely stochastic singular perturbation theory of authors like Papanicalaou , Blömker & al, where noise is applied to the stable modes only, then the linear operator in question is no longer non-self-adjoint. Although, the difficulty of the problem shifts to showing that we can use a Rigged Hilbert Space construction. If the original problem in a Hilbert space H. We force the main operator of our problem to be Hilbert-Schmidt by choosing our noise in a dense subspace S of H. We demonstrate this on the Complex-Ginsburg-Landau equation with cubic nonlinearity.

Keywords : Ginzburg-Landau equation; non-self-adjoint

Codes MSC :
76E09 - Stability and instability of nonparallel flows

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 26/02/2021
    Date de captation : 26/03/2020
    Sous collection : Research talks
    arXiv category : Mathematical Physics
    Domaine : Mathematical Physics
    Format : MP4 (.mp4) - HD
    Durée : 00:32:41
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-02-02_Drysdale.mp4

Informations sur la Rencontre

Nom de la rencontre : Mathematical Aspects of Physics with Non-Self-Adjoint Operators: 10 Years After / Les aspects mathématiques de la physique avec les opérateurs non-auto-adjoints: 10 ans après
Organisateurs de la rencontre : Boulton, Lyonell ; Krejcirik, David ; Siegl, Petr
Dates : 01/02/2021 - 05/02/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2153.html

Données de citation

DOI : 10.24350/CIRM.V.19711503
Citer cette vidéo: Drysdale, Catherine (2021). Complications making amplitude equations in fluid mechanics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19711503
URI : http://dx.doi.org/10.24350/CIRM.V.19711503

Voir aussi

Bibliographie

  • PAPANICOLAOU, George C. Some probabilistic problems and methods in singular perturbations. The Rocky Mountain Journal of Mathematics, 1976, p. 653-674. - https://www.jstor.org/stable/44240337

  • BLÖMKER, Dirk et MOHAMMED, Wael W. Amplitude equations for SPDEs with cubic nonlinearities. Stochastics An International Journal of Probability and Stochastic Processes, 2013, vol. 85, no 2, p. 181-215. - https://doi.org/10.1080/17442508.2011.624628



Sélection Signaler une erreur