En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Bayesian data assimilation and filtering - lecture 2

Sélection Signaler une erreur
Multi angle
Auteurs : Schillings, Claudia (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider the inverse problem of recovering an unknown parameter from a finite set of indirect measurements. We start with reviewing the formulation of the Bayesian approach to inverse problems. In this approach the data and the unknown parameter are modelled as random variables; the distribution of the data is given and the unknown is assumed to be drawn from a given prior distribution. The solution, called the posterior distribution, is the probability distribution of the unknown given the data, obtained through the Bayes rule. We will talk about the conditions under which this formulation leads to well-posedness of the inverse problem at the level of probability distributions. We then discuss the connection of the Bayesian approach to inverse problems with the variational regularization. This will also help us to study the properties of the modes of the posterior distribution as point estimators for the unknown parameter. We will also briefly talk about the Markov chain Monte Carlo methods in this context.

Codes MSC :

Ressources complémentaires :
http://smai.emath.fr/cemracs/cemracs21/data/presentation-speakers/schillings2.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 16/08/2021
    Date de captation : 21/07/2021
    Sous collection : Research School
    arXiv category : Numerical Analysis ; Optimization and Control ; Probability
    Domaine : Numerical Analysis & Scientific Computing ; Control Theory & Optimization ; Dynamical Systems & ODE ; Mathematics in Science & Technology ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:10:04
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-07-21-Schillings_2.mp4

Informations sur la Rencontre

Nom de la rencontre : CEMRACS 2021: Data Assimilation and Model Reduction in High Dimensional Problems / CEMRACS 2021: Assimilation de données et réduction de modèle pour des problêmes en grande dimension
Organisateurs de la rencontre : Ehrlacher, Virginie ; Lombardi, Damiano ; Mula Hernandez, Olga ; Nobile, Fabio ; Taddei, Tommaso
Dates : 19/07/2021 - 23/07/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2412.html

Données de citation

DOI : 10.24350/CIRM.V.19788703
Citer cette vidéo: Schillings, Claudia (2021). Bayesian data assimilation and filtering - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19788703
URI : http://dx.doi.org/10.24350/CIRM.V.19788703

Voir aussi

Bibliographie

  • M. Asch, M. Bocquet and M. Nodet 2017 Data Assimilation. Methods, Algorithms,
    and Applications SIAM -

  • A. Bain and D. Crisan 2009 Fundamentals of Stochastic Filtering Springer -

  • A. Doucet, N. de Freitas and N. Gordon 2001 Sequential Monte Carlo Methods in Practice Springer -

  • G. Evensen 2006 Data Assimilation: The Ensemble Kalman Filter Springer -

  • E. Kalnay 2003 Atmospheric Modeling, Data Assimilation and Predictability Cambridge -

  • P. J. van Leeuwen, Y. Cheng and S. Reich 2015 Nonlinear Data Assimilation Springer - http://dx.doi.org/10.1007/978-3-319-18347-3

  • A. Majda and J. Harlim 2011 Mathematical Strategies for Real Time Filtering of Turbulent Signals in Complex Systems Cambridge -

  • P. del Moral 2004 Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications Springer - http://dx.doi.org/10.1007/978-1-4684-9393-1

  • S. Reich and C. Cotter 2015 Probabilistic Forecasting and Bayesian Data Assimilation Cambridge - https://doi.org/10.1017/CBO9781107706804

  • S. Agapiou, M. Burger, M. Dashti and T. Helin 2018 Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems arXiv:1705.03286. - https://arxiv.org/abs/1705.03286

  • T. Bengtsson, P. Bickel and B. Li 2008 Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems IMS Collections 2 - https://doi.org/10.1214/193940307000000518

  • K. Bergemann and S. Reich 2010 A localization technique for ensemble Kalman filters Q.J.R. Meteorol. Soc. 136 pp. 701–707. - https://doi.org/10.1002/qj.591

  • A. Beskos, D. Crisan, A. Jasra 2014 On the stability of SMC methods in high dimensions The Annals of Applied Probability 24 - http://dx.doi.org/10.1214/13-AAP951

  • M. Bocquet and P. Sakov 2014 An iterative ensemble Kalman smoother Q.J.R. Meteorol. Soc. 140 682. - https://doi.org/10.1002/qj.2236

  • D. Blomker, C. Schillings and P. Wacker ¨ 2017 A strongly convergent numerical scheme from ensemble Kalman inversion arXiv:1703.06767. - https://arxiv.org/abs/1703.06767

  • A. Chernov, H. Hoel, K. Law, F. Nobile and R. Tempone 2016 Multilevel ensemble Kalman filtering for spatially extended models arXiv:1710.07282 - https://arxiv.org/abs/1710.07282

  • D. Crisan and A. Doucet 2002 A survey of convergence results on particle filtering methods for practitioners IEEE Transactions on Signal Processing 50. - https://doi.org/10.1109/78.984773

  • M. Dashti, K. J. H. Law, A. M. Stuart, and J. Voss 2013 MAP estimators and posterior consistency in Bayesian nonparametric inverse problems Inverse Problems 29 - https://doi.org/10.1088/0266-5611/29/9/095017

  • P. Del Moral and J. Tugaut 2016 On the stability and the uniform propagation of chaos properties of ensemble Kalman-Bucy filters arXiv:1605.09329. - https://arxiv.org/abs/1605.09329

  • O. G. Ernst, B. Sprungk, and H. Starkloff 2015 Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems, http://arxiv.org/abs/1504.03529. - http://arxiv.org/abs/1504.03529

  • G. Evensen 2003 The ensemble Kalman filter: Theoretical formulation and practical implementation Ocean dynamics 53. - https://doi.org/10.1007/s10236-003-0036-9

  • M. A. Iglesias, K. J. H. Law and A. M. Stuart 2013 Ensemble Kalman methods for inverse problems Inverse Problems 29 045001. - https://doi.org/10.1088/0266-5611/29/4/045001

  • F. Le Gland, V. Monbet and V.-D. Tran 2011 Large sample asymptotics for the ensemble Kalman filter Dan Crisan, Boris Rozovskii. The Oxford Handbook of Nonlinear Filtering, Oxford University Press, 598-631. -

  • J. Kaipio and E. Somersalo 2005 Statistical and Computational Inverse Problems Springer. - http://dx.doi.org/10.1007/b138659

  • R. Kalman and R. Bucy 1961 A new approach to linear filtering and prediction problems Journal of Basic Engineering 82. - https://doi.org/10.1115/1.3662552

  • D. T. B. Kelly, K. J. H. Law and A. M. Stuart 2014 Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time Nonlinearity 27 2579-2603 - https://doi.org/10.1088/0951-7715/27/10/2579

  • D. Kelly, K. Law, and A. M. Stuart 2015 Well-posedness and accuracy of the ensemble Kalman filter in discrete and continuous time Nonlinearity 27 p. 2579. - https://doi.org/10.1088/0951-7715/27/10/2579

  • D. Kelly, A. J. Majda, and X. T. Tong 2015 Concrete ensemble Kalman filters with rigorous catastrophic filter divergence Proceedings of the National Academy of Sciences 112 pp. 10589–10594 - https://doi.org/10.1073/pnas.1511063112

  • K. Law, H. Tembine, and R. Tempone 2016 Deterministic mean-field ensemble Kalman filter SIAM J. Sci. Comput 38 pp. A1251–A1279. - https://doi.org/10.1137/140984415

  • J. Mandel, L. Cobb, and J. D. Beezley 2011 On the convergence of the ensemble Kalman filter Applications of Mathematics 56 pp. 533–541. - https://doi.org/10.1007/s10492-011-0031-2

  • Y. M. Marzouk, T. Moselhy, M. Parno, A. Spantini 2016 An introduction to sampling via measure transport In Handbook of Uncertainty Quantification. R. Ghanem,
    D. Higdon, and H. Owhadi, editors Springer -

  • P. Rebeschini and R. van Handel 2015 Can local particle filters beat the curse of dimensionality? The Annals of Applied Probability 25. - http://dx.doi.org/10.1214/14-AAP1061

  • B. Rosic, A. Litvinenko, O. Pajonk, H.G. Matthies 2017 Direct Bayesian Update of
    Polynomial Chaos Representations, Preprint TU Braunschweig. - https://doi.org/10.24355/dbbs.084-201104011413-0

  • C. Schillings and A. M. Stuart 2017 Analysis of the Ensemble Kalman Filter for Inverse Problems SIAM J Numerical Analysis 55(3), 1264-1290. - https://doi.org/10.1137/16M105959X

  • C. Schillings and A. M. Stuart 2017 Convergence analysis of ensemble Kalman inversion: the linear, noisy case Applicable Analysis. - https://doi.org/10.1080/00036811.2017.1386784

  • C. Snyder, T. Bengtsson, P. Bickel and J. Anderson 2008 Obstacles to high-dimensional particle filtering Monthly Wea. Rev. 136. - https://doi.org/10.1175/2008MWR2529.1

  • A. S. Stordal, and A. H. Elsheikh 2015 Iterative ensemble smoothers in the annealed importance sampling framework Advances in Water Resources 86. - https://doi.org/10.1016/j.advwatres.2015.09.030

  • A. M. Stuart 2010 Inverse problems: a Bayesian approach Acta Numerica 19. - https://doi.org/10.1017/S0962492910000061

  • A. Tarantola 2005 Inverse Problem Theory and Methods for Model Parameter Estimation SIAM. - https://doi.org/10.1137/1.9780898717921

  • X. T. Tong, A. J. Majda, and D. Kelly 2015 Nonlinear stability of the ensemble Kalman filter with adaptive covariance inflation arXiv:1507.08319. - http://arxiv.org/abs/1507.08319

  • X. T. Tong, A. J. Majda, and D. Kelly 2016 Nonlinear stability and ergodicity of ensemble based Kalman filters, Nonlinearity, 29, p. 657. - https://iopscience.iop.org/article/10.1088/0951-7715/29/2/657/ampdf

  • C. Villani 2009 Optimal Transportation: Old and New Springer - http://dx.doi.org/10.1007/978-3-540-71050-9

  • J. de Wiljes, S. Reich, and W. Stannat 2016 Long-time stability and accuracy of the ensemble Kalman-Bucy filter for fully observed processes and small measurement noise, arXiv:1612.06065. - http://arxiv.org/abs/1612.06065

  • G. Evensen 2003 The ensemble Kalman filter: Theoretical formulation and practical implementation Ocean dynamics 53 pp. 343–367. - https://doi.org/10.1007/s10236-003-0036-9

  • R. Kalman and R. Bucy 2016 A new approach to linear filtering and prediction problems Journal of Basic Engineering 82 95-108. - https://doi.org/10.1115/1.3658902



Imagette Video

Sélection Signaler une erreur