En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Subgraphs of diameter 1 in graphs of girth 2

Sélection Signaler une erreur
Multi angle
Auteurs : Przytycki, Piotr (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $G$ be a finite leafless subgraph of diameter 1 in a graph of girth 2. We prove that all cycles of $G$ and paths of $G$ joining vertices of degree at least 3 in $G$ have rational length. This is joint work with Sergey Norin and Damian Osajda.

Keywords : square tiling; girth

Codes MSC :
05C10 - Planar graphs; geometric and topological aspects of graph theory
20F65 - Geometric group theory
51E24 - Buildings and the geometry of diagrams

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 07/01/2022
    Date de captation : 09/12/2021
    Sous collection : Research talks
    arXiv category : Group Theory
    Domaine : Combinatorics ; Geometry
    Format : MP4 (.mp4) - HD
    Durée : 00:46:47
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2021-12-09_Przytycki.mp4

Informations sur la Rencontre

Nom de la rencontre : Metric Graph Theory and Related Topics / Théorie métrique des graphes et interactions
Organisateurs de la rencontre : Bazgan, Cristina ; Chalopin, Jérémie ; Dragan, Feodor ; Naves, Guyslain ; Vaxès, Yann
Dates : 06/12/2021 - 10/12/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2402.html

Données de citation

DOI : 10.24350/CIRM.V.19861503
Citer cette vidéo: Przytycki, Piotr (2021). Subgraphs of diameter 1 in graphs of girth 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19861503
URI : http://dx.doi.org/10.24350/CIRM.V.19861503

Voir aussi

Bibliographie

  • NORIN, Sergey, OSAJDA, Damian, et PRZYTYCKI, Piotr. Torsion groups do not act on 2-dimensional CAT (0) complexes. Duke Math. J, 2021. - https://arxiv.org/abs/1902.02457



Sélection Signaler une erreur