En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Counting S4 and S5 extensions satisfying the Hasse norm principle

Sélection Signaler une erreur
Multi angle
Auteurs : Newton, Rachel (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Let $L/K$ be an extension of number fields. The norm map $N_{L/K} :L^{*}\to K^{*}$ extends to a norm map from the ideles of L to those of $K$. The Hasse norm principle is said to hold for $L/K$ if, for elements of $K^{*}$, being in the image of the idelic norm map is equivalent to being the norm of an element of L^{*}. The frequency of failure of the Hasse norm principle in families of abelian extensions is fairly well understood, thanks to previous work of Christopher Frei, Daniel Loughran and myself, as well as recent work of Peter Koymans and Nick Rome. In this talk, I will focus on the non-abelian setting and discuss joint work with Ila Varma on the statistics of the Hasse norm principle in field extensions with normal closure having Galois group $S_{4}$ or $S_{5}$.

Keywords : Hasse norm principle; number fields; non-abelian extensions

Codes MSC :
11R37 - Class field theory
11R45 - Density theorems
14G05 - Rational points

    Informations sur la Vidéo

    Réalisateur : Petit, Jean
    Langue : Anglais
    Date de publication : 28/06/2023
    Date de captation : 05/06/2023
    Sous collection : Research talks
    arXiv category : Number Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:55:33
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-06-05_Newton_1.mp4

Informations sur la Rencontre

Nom de la rencontre : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes
Organisateurs de la rencontre : Anni, Samuele ; Bruin, Nils ; Kohel, David ; Martindale, Chloe
Dates : 05/06/2023 - 09/06/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2889.html

Données de citation

DOI : 10.24350/CIRM.V.20054603
Citer cette vidéo: Newton, Rachel (2023). Counting S4 and S5 extensions satisfying the Hasse norm principle. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20054603
URI : http://dx.doi.org/10.24350/CIRM.V.20054603

Voir aussi

Bibliographie

  • FREI, Christopher, LOUGHRAN, Daniel, et NEWTON, Rachel. The Hasse norm principle for abelian extensions. American Journal of Mathematics, 2018, vol. 140, no 6, p. 1639-1685. - https://doi.org/10.1353/ajm.2018.0048

  • FREI, Christopher, LOUGHRAN, Daniel, et NEWTON, Rachel. Number fields with prescribed norms. Commentarii Mathematici Helvetici, 2022, vol. 97, no 1. - https://doi.org/10.4171/cmh/528

  • KOYMANS, Peter et ROME, Nick. A note on the Hasse norm principle. arXiv preprint arXiv:2301.10136, 2023. - https://doi.org/10.48550/arXiv.2301.10136

  • KOYMANS, Peter et ROME, Nick. Weak approximation on the norm one torus. arXiv preprint arXiv:2211.05911, 2022. - https://doi.org/10.48550/arXiv.2211.05911

  • MACEDO, André et NEWTON, Rachel. Explicit methods for the Hasse norm principle and applications to An and Sn extensions. In : Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 2022. p. 489-529. - https://doi.org/10.1017/S0305004121000268

  • ROME, Nick. The Hasse norm principle for biquadratic extensions. Journal de théorie des nombres de Bordeaux, 2018, vol. 30, no 3, p. 947-964. - https://doi.org/10.5802/jtnb.1058

  • NEWTON, Rachel et VARMA, Ila. Counting $S_4$ and $S_5$ extensions satisfying the Hasse norm principle. in Progress. -



Imagette Video

Sélection Signaler une erreur