En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Two examples of thermodynamic limits in neuroscience

Sélection Signaler une erreur
Multi angle
Auteurs : Faugeras, Olivier (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : The human brain contains billions of neurones and glial cells that are tightly interconnected. Describing their electrical and chemical activity is mind-boggling hence the idea of studying the thermodynamic limit of the equations that describe these activities, i.e. to look at what happens when the number of cells grows arbitrarily large. It turns out that under reasonable hypotheses the number of equations to deal with drops down sharply from millions to a handful, albeit more complex. There are many different approaches to this which are usually called mean-field analyses. I present two mathematical methods to illustrate these approaches. They both enjoy the feature that they propagate chaos, a notion I connect to physiological measurements of the correlations between neuronal activities. In the first method, the limit equations can be read off the network equations and methods 'à la Sznitman' can be used to prove convergence and propagation of chaos as in the case of a network of biologically plausible neurone models. The second method requires more sophisticated tools such as large deviations to identify the limit and do the rest of the job, as in the case of networks of Hopfield neurones such as those present in the trendy deep neural networks.

Keywords : mean-field limits; propagation of chaos; stochastic differential equations; McKean-Vlasov equations; Fokker-Planck equations; neural networks; neural assemblies; Hodgkin-Huxley neurons; FitzHugh-Nagumo neurons

Codes MSC :
35Q80 - Applications of PDE in areas other than physics
60B10 - Convergence of probability measures
60F99 - None of the above but in this section
82C32 - Neural nets
82C80 - Numerical methods (Monte Carlo, series resummation, etc.)
92B20 - Neural networks, artificial life and related topics

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2390/Slides/Olivier_Faugeras.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 27/09/2023
    Date de captation : 08/09/2023
    Sous collection : Research talks
    arXiv category : Probability
    Domaine : Mathematics in Science & Technology ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:39:10
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-09-08_Faugeras.mp4

Informations sur la Rencontre

Nom de la rencontre : A Random Walk in the Land of Stochastic Analysis and Numerical Probability / Une marche aléatoire dans l'analyse stochastique et les probabilités numériques
Organisateurs de la rencontre : Champagnat, Nicolas ; Pagès, Gilles ; Tanré, Etienne ; Tomašević, Milica
Dates : 04/09/2023 - 08/09/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2390.html

Données de citation

DOI : 10.24350/CIRM.V.20089103
Citer cette vidéo: Faugeras, Olivier (2023). Two examples of thermodynamic limits in neuroscience. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20089103
URI : http://dx.doi.org/10.24350/CIRM.V.20089103

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur