En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Score matching for simulating sub-Riemannian diffusion bridge processes

Sélection Signaler une erreur
Multi angle
Auteurs : Habermann, Karen (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Simulation of conditioned diffusion processes is an essential tool in inference for stochastic processes, data imputation, generative modelling, and geometric statistics. Whilst simulating diffusion bridge processes is already difficult on Euclidean spaces, when considering diffusion processes on Riemannian manifolds the geometry brings in further complications. In even higher generality, advancing from Riemannian to sub-Riemannian geometries introduces hypoellipticity, and the possibility of finding appropriate explicit approximations for the score, the logarithmic gradient of the density, of the diffusion process is removed. We handle these challenges and construct a method for bridge simulation on sub-Riemannian manifolds by demonstrating how recent progress in machine learning can be modified to allow for training of score approximators on sub-Riemannian manifolds. Since gradients dependent on the horizontal distribution, we generalise the usual notion of denoising loss to work with non-holonomic frames using a stochastic Taylor expansion, and we demonstrate the resulting scheme both explicitly on the Heisenberg group and more generally using adapted coordinates. Joint work with Erlend Grong (Bergen) and Stefan Sommer (Copenhagen).

Keywords : bridge process; sub-Riemannian manifold; score matching; bridge sampling

Codes MSC :
53C17 - Sub-riemannian geometry
58J65 - Diffusion processes and stochastic analyisis on manifolds
62R30 - Statistics on manifolds

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 06/12/2024
    Date de captation : 26/11/2024
    Sous collection : Research talks
    arXiv category : Probability ; Machine Learning ; Differential Geometry ; Statistics Theory
    Domaine : Analysis and its Applications ; Geometry ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:46:20
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-11-26_Habermann.mp4

Informations sur la Rencontre

Nom de la rencontre : Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne
Organisateurs de la rencontre : Borza, Samuel ; Chittaro, Francesca ; Rifford, Ludovic ; Sacchelli, Ludovic ; Stefani, Giorgio
Dates : 25/11/2024 - 29/11/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3091.html

Données de citation

DOI : 10.24350/CIRM.V.20272303
Citer cette vidéo: Habermann, Karen (2024). Score matching for simulating sub-Riemannian diffusion bridge processes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20272303
URI : http://dx.doi.org/10.24350/CIRM.V.20272303

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur