En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Common range of co-analytic Toeplitz operators on the Drury-Arveson space

Sélection Signaler une erreur
Multi angle
Auteurs : McCarthy, John (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We shall describe $\cap_m \operatorname{ran} M_m^*$, where $m$ ranges over the cyclic multipliers of the DruryArveson space $H_d^2$, and $M_m$ denotes multiplication by $m$ on $H_d^2$. I will try to convince the audience that there is some interesting functional analysis behind the description.

This is joint work with Alexander Aleman, Michael Hartz and Stefan Richter.

Keywords : Drury-Arveson space; uniform Smirnov class; cyclic multiplication operators; common range

Codes MSC :

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 13/12/2024
    Date de captation : 03/12/2024
    Sous collection : Research talks
    arXiv category : Functional Analysis ; Complex Variables
    Domaine : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:38:07
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-12-03_Mccarthy.mp4

Informations sur la Rencontre

Nom de la rencontre : Operators on analytic function spaces / Opérateurs sur des espaces de fonctions analytiques
Organisateurs de la rencontre : Fricain, Emmanuel ; Garcia, Stephan Ramon ; Gorkin, Pamela ; Hartmann, Andreas ; Mashreghi, Javad
Dates : 02/12/2024 - 06/12/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/3085.html

Données de citation

DOI : 10.24350/CIRM.V.20273603
Citer cette vidéo: McCarthy, John (2024). Common range of co-analytic Toeplitz operators on the Drury-Arveson space. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20273603
URI : http://dx.doi.org/10.24350/CIRM.V.20273603

Voir aussi

Bibliographie

  • AGLER, Jim et MCCARTHY, John E. Complete Nevanlinna–Pick kernels. Journal of Functional Analysis, 2000, vol. 175, no 1, p. 111-124. - https://doi.org/10.1006/jfan.2000.3599

  • AGLER, Jim et MCCARTHY, John E. Pick interpolation and Hilbert function spaces. American Mathematical Society, 2023. - https://doi.org/10.1090/gsm/044

  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. The Smirnov class for spaces with the complete Pick property. Journal of the London Mathematical Society, 2017, vol. 96, no 1, p. 228-242. - https://doi.org/10.1112/jlms.12060

  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. Factorizations induced by complete Nevanlinna–Pick factors. Advances in Mathematics, 2018, vol. 335, p. 372-404. - https://doi.org/10.1016/j.aim.2018.07.013

  • ALEMAN, Alexandru, HARTZ, Michael, MCCARTHY, John E., et al. Multiplier tests and subhomogeneity of multiplier algebras. Documenta Mathematica, 2022, vol. 27, p. 719-764. - https://doi.org/10.48550/arXiv.2008.00981

  • ARVESON Whilliam .Subalgebras of C*-algebras III: Multivariable operator theory. Acta Math. 181 (2) 159 - 228, 1998 - https://doi.org/10.1007/BF02392585

  • BORICHEV, Alexander, FRANK, Rupert, et VOLBERG, Alexander. Counting eigenvalues of Schr\" odinger operator with complex fast decreasing potential. arXiv preprint arXiv:1811.05591, 2018. - https://doi.org/10.48550/arXiv.1811.05591

  • DAVIDSON, Kenneth, RAMSEY, Christopher, et SHALIT, Orr. Operator algebras for analytic varieties. Transactions of the American Mathematical Society, 2015, vol. 367, no 2, p. 1121-1150. - https://doi.org/10.1090/S0002-9947-2014-05888-1

  • DAVIS, B. Mark et MCCARTHY, John E. Multipliers of de Branges spaces. Michigan Math. J, 1991, vol. 38, no 2, p. 225-240. - https://doi.org/10.1307/mmj/1029004330

  • EDGAR, G. A. Two function-space topologies. Proceedings of the American Mathematical Society, 1973, vol. 39, no 1, p. 219-220. - https://doi.org/10.1090/S0002-9939-1973-0313771-3

  • EDWARDS, Robert E. Functional Analysis: Theory and Applications. Dover, New York. 1995. -

  • EL-FALLAH, Omar, KELLAY, Karim, MASHREGHI, Javad, et al. A primer on the Dirichlet space. Cambridge University Press, 2014. - https://doi.org/10.1017/CBO9781107239425

  • GARNETT, John. Bounded analytic functions.GTM Vol.236 . Springer Science & Business Media, 2006. - https://doi.org/10.1007/0-387-49763-3

  • HARTZ, Michael. On the isomorphism problem for multiplier algebras of Nevanlinna-Pick spaces. Canadian Journal of Mathematics, 2017, vol. 69, no 1, p. 54-106. - https://doi.org/10.4153/CJM-2015-050-6

  • HELSON, Henry. Large analytic functions. II. in Analysis and partial differential equations, 1990, vol. 122, p. 217-220. -

  • KORENBLUM, Boris et MCCARTHY, John E. The range of Toeplitz operators on the ball. Revista Matemática Iberoamericana, 1996, vol. 12, p. 47-62. - https://doi.org/10.4171/rmi/194

  • MCCARTHY, John E. Common range of co-analytic Toeplitz operators. Journal of the American Mathematical Society, 1990, vol. 3, no 4, p. 793-799. - https://doi.org/10.2307/1990902

  • MCCARTHY, John E. Topologies on the Smirnov class. Journal of functional analysis, 1992, vol. 104, no 1, p. 229-241. - https://doi.org/10.1016/0022-1236(92)90096-2

  • NAWROCKI, M. Linear functionals on the Smirnov class of the unit ball in Cn. Annales Fennici Mathematici, 1989, vol. 14, no 2, p. 369-379. - https://doi.org/10.5186/aasfm.1989.1421

  • PAU, Jordi et PELÁEZ, José. On the zeros of functions in Dirichlet-type spaces. Transactions of the American Mathematical Society, 2011, vol. 363, no 4, p. 1981-2002. - https://doi.org/10.1090/S0002-9947-2010-05108-6

  • PRIWALOW I. I. . Randeigenschaften analytischer Funktionen, Zweite, unter Redaktion von A. I. Markuschewitsch überarbeitete und ergänzte Auflage. Hochschulbücher für Mathematik, Bd. 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956. -

  • RUDIN Walter. Function Theory in the unit ball of Cn, Springer-Verlag, Berlin, 1980 -

  • RUDIN Walter. New constructions of functions holomorphic in the unit ball of cn, C.B.M.S. No. 63, American Mathematical Society, Providence, 1986. -

  • RUDIN Walter. Functional analysis, Second, International Series in Pure and Applied Mathematics, McGraw-Hill Inc., New York, 1991 -

  • SARASON, Donald. Sub-Hardy Hilbert spaces in the unit disk, University of Arkansas Lecture Notes, Wiley, New York, 1994 -

  • SHALIT, Orr. (2015). Operator theory and function theory in drury-arveson space and its quotients. In Operator Theory (Vol. 2-2, pp. 1125-1180). Springer Basel. - https://doi.org/10.1007/978-3-0348-0667-1_60

  • SHAPIRO, Joel H. et SHIELDS, Allen L. Unusual topological properties of the Nevanlinna class. American Journal of Mathematics, 1975, vol. 97, no 4, p. 915-936. - https://doi.org/10.2307/2373681

  • WILANSKY Albert, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978 -

  • YANAGIHARA Niro .The containing Fréchet space for the class N +. Duke Math. J. 40 (1) 93 - 103, March 1973 - https://doi.org/10.1215/S0012-7094-73-04010-6

  • YANAGIHARA, Niro. Multipliers and linear functionals for the class 𝑁⁺. Transactions of the American Mathematical Society, 1973, vol. 180, p. 449-461. - https://doi.org/10.1090/S0002-9947-1973-0338382-X

  • YANAGIHARA, Niro. Mean growth and Taylor coefficients of some classes of functions. Annales Polonici Mathematici 30 (1). 1974. p. 37-48. - http://eudml.org/doc/263410



Imagette Video

Sélection Signaler une erreur