En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    1

    Low complexity regularization of inverse problem - Recovery guarantees

    Bookmarks Report an error
    Post-edited
    Authors : Peyré, Gabriel (Author of the conference)
    CIRM (Publisher )

    This video file cannot be played.(Error Code: 102630)
    convex optimization impact of the noise linear model - sparsity structured sparsity total variation low rank gauge function L1 norm nuclear form subdifferential L1 example nuclear norm example dual certificate noise robustness compressed sensing phase transition minimal-norm certificate model stability compressed sensing sparse deconvolution regularization with measures optimization over measures space support stability example : low-pass filter

    Abstract : In this talk, we investigate in a unified way the structural properties of a large class of convex regularizers for linear inverse problems. These penalty functionals are crucial to force the regularized solution to conform to some notion of simplicity/low complexity. Classical priors of this kind includes sparsity, piecewise regularity and low-rank. These are natural assumptions for many applications, ranging from medical imaging to machine learning.
    imaging - image processing - sparsity - convex optimization - inverse problem - super-resolution

    MSC Codes :
    47N10 - Applications in optimization, convex analysis, mathematical programming, economics
    62H35 - Image analysis (statistics)
    65D18 - Computer graphics, image analysis, and computational geometry
    68U10 - Image processing (computing aspects)
    90C31 - Sensitivity, stability, parametric optimization
    94A08 - Image processing (compression, reconstruction, etc.)
    80M50 - Optimization

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 04/02/14
      Conference Date : 17/12/2013
      Subseries : Research talks
      arXiv category : Statistics Theory ; Optimization and Control ; Machine Learning
      Mathematical Area(s) : Analysis and its Applications ; Mathematics in Science & Technology
      Format : QuickTime (.mov) Video Time : 01:13:43
      Targeted Audience : Researchers
      Download : https://videos.cirm-math.fr/2013-12-17_Peyre.mp4

    Information on the Event

    Event Title : Computational geometry days / Journées de géométrie algorithmique
    Event Organizers : Cohen-Steiner, David ; Mérigot, Quentin
    Dates : 16/12/13 - 20/12/13
    Event Year : 2013

    Citation Data

    DOI : 10.24350/CIRM.V.18448203
    Cite this video as: Peyré, Gabriel (2013). Low complexity regularization of inverse problem - Recovery guarantees. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18448203
    URI : http://dx.doi.org/10.24350/CIRM.V.18448203

    Bibliography



    Bookmarks Report an error
    Close