En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    2

    Detection theory and novelty filters

    Sélection Signaler une erreur
    Post-edited
    Auteurs : Morel, Jean-Michel (Auteur de la Conférence)
    CIRM (Editeur )

    This video file cannot be played.(Error Code: 102630)
    detection principles variational method sparsity of patches number of tests building the image model number of false alarms example of detections in textures examples of multiscale detections questions of the audience

    Résumé : In this presentation based on on-line demonstrations of algorithms and on the examination of several practical examples, I will reflect on the problem of modeling a detection task in images. I will place myself in the (very frequent) case where the detection task can not be formulated in a Bayesian framework or, rather equivalently that can not be solved by simultaneous learning of the model of the object and that of the background. (In the case where there are plenty of examples of the background and of the object to be detected, the neural networks provide a practical answer, but without explanatory power). Nevertheless for the detection without "learning", I will show that we can not avoid building a background model, or possibly learn it. But this will not require many examples.

    Joint works with Axel Davy, Tristan Dagobert, Agnes Desolneux, Thibaud Ehret.

    Codes MSC :
    65D18 - Computer graphics, image analysis, and computational geometry
    68T05 - Learning and adaptive systems
    68U10 - Image processing (computing aspects)

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 25/05/17
      Date de captation : 17/05/17
      Sous collection : Research talks
      arXiv category : Computer Science ; Numerical Analysis
      Domaine : Numerical Analysis & Scientific Computing ; Computer Science
      Format : MP4 (.mp4) - HD
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2017-05-17_Morel.mp4

    Informations sur la Rencontre

    Nom de la rencontre : 19th workshop on stochastic geometry, stereology and image analysis / 19ème conférence en géométrie stochastique, stéréologie et analyse d'images
    Organisateurs de la rencontre : Calka, Pierre ; Coeurjolly, Jean-François ; Coupier, David ; Estrade, Anne ; Molchanov, Ilya
    Dates : 15/05/17 - 19/05/17
    Année de la rencontre : 2017
    URL Congrès : http://conferences.cirm-math.fr/1513.html

    Données de citation

    DOI : 10.24350/CIRM.V.19166203
    Citer cette vidéo: Morel, Jean-Michel (2017). Detection theory and novelty filters. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19166203
    URI : http://dx.doi.org/10.24350/CIRM.V.19166203

    Voir aussi

    Bibliographie

    • Boracchi, G., Carrera, D., & Wohlberg, B. (2014). Novelty detection in images by sparse representations. IEEE Symposium on Intelligent Embedded Systems, Orlando 2014, 47-54 - http://dx.doi.org/10.1109/INTELES.2014.7008985

    • Carrera, D., Boracchi, G., Foi, A., & Wohlberg, B. (2016). Scale-invariant anomaly detection with multiscale group-sparse models. IEEE International Conference on Image Processing, Phoenix 2016, 3892-3896 - http://dx.doi.org/10.1109/ICIP.2016.7533089

    • Delsolneux, A., Moisan, L., & Morel, J.-M. (2008). From Gestalt theory to image analysis. A probabilistic approach. New York: Springer - http://dx.doi.org/10.1007/978-0-387-74378-3

    • Margolin, R., Tal, A., & Zelnik-Manor, L. (2013). What makes a patch distinct?. IEEE Conference on Computer Vision and Pattern Recognition, Portland 2013, 1139-1146 - http://dx.doi.org/10.1109/CVPR.2013.151

    • Mishne, G., & Cohen, I. (2014). Multiscale anomaly detection using diffusion maps and saliency score. IEEE International Conference on Acoustics, Speech and Signal Processing, Florence 2014, 2823-2827 - http://dx.doi.org/10.1109/ICASSP.2014.6854115

    • Raad, L., Desolneux, A., Morel, J.-M. (2015) Conditional Gaussian Models for Texture Synthesis. In J.-F. Aujol, M. Nikolova, & N. Papadakis (Eds.), Scale space and variational methods in computer vision (pp. 474-485). Cham: Springer - http://dx.doi.org/10.1007/978-3-319-18461-6_38



    Sélection Signaler une erreur
    Close