En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Integral points on Markoff type cubic surfaces and dynamics

Bookmarks Report an error
Post-edited
Authors : Sarnak, Peter (Author of the conference)
CIRM (Publisher )

Loading the player...
integral points on hypersurfaces 3 and higher dimensions cubic surfaces Markoff surfaces and dynamics diophantine analysis of Markoff surfaces integral points on a fixed surface and strong approximation connection to Painlevé strong approximation - the basic conjecture results towards the main conjecture Markoff numbers outline of some points in the proofs

Abstract : Cubic surfaces in affine three space tend to have few integral points .However certain cubics such as $x^3 + y^3 + z^3 = m$, may have many such points but very little is known. We discuss these questions for Markoff type surfaces: $x^2 +y^2 +z^2 -x\cdot y\cdot z = m$ for which a (nonlinear) descent allows for a study. Specifically that of a Hasse Principle and strong approximation, together with "class numbers" and their averages for the corresponding nonlinear group of morphims of affine three space.

MSC Codes :
11G05 - Elliptic curves over global fields
37A45 - Relations of ergodic theory with number theory and harmonic analysis

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 06/01/17
    Conference Date : 12/12/16
    Subseries : Research talks
    arXiv category : Number Theory ; Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:29
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-12-12_Sarnak.mp4

Information on the Event

Event Title : Jean-Morlet Chair: Ergodic theory and its connections with arithmetic and combinatorics / Chaire Jean Morlet : Théorie ergodique et ses connexions avec l'arithmétique et la combinatoire
Event Organizers : Cassaigne, Julien ; Ferenczi, Sébastien ; Hubert, Pascal ; Kulaga-Przymus, Joanna ; Lemanczyk, Mariusz
Dates : 12/12/16 - 16/12/16
Event Year : 2016
Event URL : https://www.chairejeanmorlet.com/1553.html

Citation Data

DOI : 10.24350/CIRM.V.19100603
Cite this video as: Sarnak, Peter (2016). Integral points on Markoff type cubic surfaces and dynamics. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19100603
URI : http://dx.doi.org/10.24350/CIRM.V.19100603

See Also

Bibliography



Bookmarks Report an error