En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Maps between curves and diophantine obstructions

Bookmarks Report an error
Multi angle
Authors : Voloch, José Felipe (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given two algebraic curves $X$, $Y$ over a finite field we might want to know if there is a rational map from $Y$ to $X$. This has been looked at from a number of perspectives and we will look at it from the point of view of diophantine geometry by viewing the set of maps as $X(K)$ where $K$ is the function field of $Y$. We will review some of the known obstructions to the existence of rational points on curves over global fields, apply them to this situation and present some results and conjectures that arise.

MSC Codes :
11G20 - Curves over finite and local fields
11G35 - Varieties over global fields
14G05 - Rational points

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/06/2017
    Conference Date : 20/06/2017
    Subseries : Research talks
    arXiv category : Number Theory ; Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:52:05
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-06-20_Voloch.mp4

Information on the Event

Event Title : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes
Event Organizers : Aubry, Yves ; Howe, Everett ; Ritzenthaler, Christophe
Dates : 19/06/17 - 23/06/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1608.html

Citation Data

DOI : 10.24350/CIRM.V.19186203
Cite this video as: Voloch, José Felipe (2017). Maps between curves and diophantine obstructions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19186203
URI : http://dx.doi.org/10.24350/CIRM.V.19186203

See Also

Bibliography



Bookmarks Report an error