Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
On a complex manifold, complex flows induce complete holomorphic vector fields. However, only very seldomly a vector field integrates into a flow. In general, it is difficult to say whether a holomorphic vector field on a non-compact manifold is complete or not (vector fields on compact manifolds are always complete). Some twenty-five years ago, Rebelo realized an exploited the fact that there are local (and not just global!) obstructions for a vector field to be complete. This opened the door for a local study of complete holomorphic vector fields on complex manifolds. In this series of talks we will explore some of these results.
What I will talk about is for the greater part contained or summarized in the articles in the bibliography. Their introductions might be useful as a first reading on the subject.
Keywords : holomorphic vector field; completeness
Codes MSC :
32C99
- None of the above but in this section
57S20
- Noncompact Lie groups of transformations
34M05
- Entire and meromorphic solutions (ODE)
Ressources complémentaires :
https://www.cirm-math.com/uploads/2/6/6/0/26605521/flows_trans2.pdf
|
Informations sur la Rencontre
Nom de la rencontre : Jean-Morlet Chair 2020 - Research School: Geometry and Dynamics of Foliations / Chaire Jean-Morlet 2020 - Ecole : Géométrie et dynamiques des feuilletages Dates : 18/05/2020 - 22/05/2020
Année de la rencontre : 2020
URL Congrès : https://www.chairejeanmorlet.com/2251.html
DOI : 10.24350/CIRM.V.19632303
Citer cette vidéo:
(2020). Complete holomorphic vector fields and their singular points - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19632303
URI : http://dx.doi.org/10.24350/CIRM.V.19632303
|
Voir aussi
Bibliographie
- Ghys, Étienne; Rebelo, Julio C. Singularités des flots holomorphes. II. Annales de l'Institut Fourier, Tome 47 (1997) no. 4, pp. 1117-1174 - http://dx.doi.org/10.5802/aif.1594
- Rebelo, Julio C. Réalisation de germes de feuilletages holomorphes par des champs semi-complets en dimension 2. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 9 (2000) no. 4, pp. 735-763 - http://www.numdam.org/item/AFST_2000_6_9_4_735_0/