En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The degenerate special Lagrangian equation

Bookmarks Report an error
Multi angle
Authors : Solomon, Jake (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The degenerate special Lagrangian equation governs geodesics in the space of positive Lagrangians. Existence of such geodesics has implications for uniqueness and existence of special Lagrangians. It also yields lower bounds on the cardinality of Lagrangian intersec- tions related to the strong Arnold conjecture. An overview of what is known about the existence problem will be given. The talk is based on joint work with A. Yuval and with Y. Rubinstein.

MSC Codes :
53C22 - Geodesics [See also 58E10]
53D12 - Lagrangian submanifolds - Maslov index

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/06/15
    Conference Date : 03/06/15
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Differential Geometry ; Symplectic Geometry
    Mathematical Area(s) : Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:06:11
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-06-03_Solomon.mp4

Information on the Event

Event Title : Jean-Morlet Chair: Moduli spaces in symplectic topology and in Gauge theory / Chaire Jean-Morlet : Espaces de modules en topologie symplectique et en théorie de Jauge
Event Organizers : Hofer, Helmut ; Itenberg, Ilia ; Lalonde, François ; McDuff, Dusa ; Ono, Kaoru ; Polterovich, Leonid ; Teleman, Andrei
Dates : 01/06/2015 - 05/06/15
Event Year : 2015
Event URL : https://www.chairejeanmorlet.com/1256.html

Citation Data

DOI : 10.24350/CIRM.V.18771003
Cite this video as: Solomon, Jake (2015). The degenerate special Lagrangian equation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18771003
URI : http://dx.doi.org/10.24350/CIRM.V.18771003

Bibliography



Bookmarks Report an error